hdoj1285 拓扑排序

确定比赛名次

分析:

很明显,一看就是拓扑排序。 看似简单, 暗藏武器啊。 第一次做的时候一边拓扑排序一边标记他们的深度, 例如题中给的例子 {1 2;2 3;4 3 }。1的深度为1。 2、4的深度为2; 3的深度为3。 然后按深度的逆序输出深度相同的先输出小的。 其实不然啊!! 举个例子6个点, 边为{5, 3; 5,1; 5,4; 5,2; 3,1; 3,2; 6,4; 6,2; 4,2} 最好自己画一下, 看的更明白些!! 按我第一次思路 从1到6他们深度依次为1,1,2,2,3,3; 结果为5, 6,3, 4, 1, 2。 其实哩。正确结果应该为5, 3, 1, 6, 2, 4。

最初没有比5、6大的数, 5〈 6,所以输出5。 这时相当于没有5了, 去掉5之后发现, 也没有比3大的数了, 3又小于6, 所以先输出3。 取掉3, 这时也没有比1大的数了, 在输出1………….直到输出所有点。

正确解题思路为:

1)选一个入度为0的点p输出;

2)从图中删除p点

3)将p全部后继点的入度-1

4)重复1-3,直到全部点都输出


#include<iostream>
#include<cstdio>
#include<string.h>
#include<math.h>
#include<algorithm>
using namespace std;

int n, m, mx, v[505], e[505][505], ru[505];
void topu()
{
    int sum = 0;
    int flag = 1;
    while(sum < n)
    {
        for(int i = 1; i <= n; i++)
        {
            if(v[i] == 0 && ru[i] == 0)
            {
                v[i] = 1;
                if(flag == 1)
                {printf("%d", i);flag = 0;}
                else
                    printf(" %d", i);
                for(int j = 1; j <= n; j++)
                {
                    if(e[i][j] == 1)
                    {
                        ru[j]--;
                        e[i][j] = 0;
                    }
                }
                sum++;
                break;
            }
        }
    }
}
int main()
{
    while(scanf("%d%d", &n, &m) != EOF)
    {
        memset(e, 0, sizeof(e));
        memset(v, 0, sizeof(v));
        memset(ru, 0, sizeof(ru));
        for(int i = 1; i <= m; i++)
        {
            int x, y;
            scanf("%d%d", &x, &y);
            if(e[x][y] == 0)
            {
                e[x][y] = 1;
                ru[y]++;
            }
        }
        topu();
        cout << endl;
    }
    return 0;
}
时间: 2024-10-07 05:26:41

hdoj1285 拓扑排序的相关文章

拓扑排序讲解

在这里我们要说的拓扑排序是有前提的 我们在这里说的拓扑排序是基于有向无环图的!!!. (⊙o⊙)…我所说的有向无环图都知道是什么东西吧.. 如果不知道,我们下面先来来说说什么是有向无环图. 所谓有向无环图,顾名思义是不存在环的有向图(至于有向图是什么不知道的在前面我们有一个图论讲解上都有). 点的入度:以这个点为结束点的边数. 点的出度:以这个点为出发点的边的条数. 拓扑序就是对于一个节点的一个排列,使得(u,v)属于E,那么u一定出现在v的前面.然而拓扑排序就是一个用来求拓扑序的东西. 对于左

CSU 1804: 有向无环图(拓扑排序)

http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1804 题意:…… 思路:对于某条路径,在遍历到某个点的时候,之前遍历过的点都可以到达它,因此在这个时候对答案的贡献就是∑(a1 + a2 + a3 + ... + ai) * bv,其中a是之前遍历到的点,v是当前遍历的点. 这样想之后就很简单了.类似于前缀和,每次遍历到一个v点,就把a[u]加给a[v],然后像平时的拓扑排序做就行了. 1 #include <bits/stdc++.h>

7-9-有向图无环拓扑排序-图-第7章-《数据结构》课本源码-严蔚敏吴伟民版

课本源码部分 第7章  图 - 有向无环图拓扑排序 ——<数据结构>-严蔚敏.吴伟民版        源码使用说明  链接??? <数据结构-C语言版>(严蔚敏,吴伟民版)课本源码+习题集解析使用说明        课本源码合辑  链接??? <数据结构>课本源码合辑        习题集全解析  链接??? <数据结构题集>习题解析合辑        本源码引入的文件  链接? Status.h.SequenceStack.c.ALGraph.c    

hihoCoder 1175:拓扑排序二

题目链接: http://hihocoder.com/problemset/problem/1175 题目难度:一星级(简单题) 今天闲来无事,决定刷一道水题.结果发现这道水题居然把我卡了将近一个钟头. 最后终于调通了.总结起来,原因只有一个:不够仔细. 思路不用细说了,就是拓扑排序的简单应用.然而,一些不起眼的细节才是让你掉坑里的真正原因. 猜猜哪儿可能出bug? // A simple problem, but you can't be too careful with it. #inclu

hdu1285(拓扑排序)

这道题要求没有输赢关系的两个元素必须按照升序输出,有输赢关系的,赢得在输的前面,所以用队列或者栈来降低时间复杂度的优化过的拓扑排序会出错. 比如这组输入 5 3 1 2 2 3 4 5 至少我写的两种拓扑排序都wa了.但是不用队列或者栈来优化的话, 1.每次都从头至尾扫描一遍,找到一个没标记过的节点, 2.将它标记 3.然后删除从它出来的每条边. 重复这三个操作,加标记的次序,就是题目要的答案. 下面的代码中用到了队列,但只是用来保存答案而已.并没有用它优化的意思. #include <iost

uva 10305 Ordering Tasks(拓扑排序)

拓扑排序,不用判断是否有环,dfs挺简单的 代码: #include<stdio.h> #include<string.h> #include<stdlib.h> int map[105][105]; int visit[105]; int c[105]; int n,m,t; void dfs(int x) { visit[x] = 1; for(int i=1; i<=n; i++) { if(!visit[i]&&map[i][x]==1)

NOJ 2015年陕西省程序设计竞赛网络预赛(正式赛)(忙碌的选课系统-拓扑排序注意重边)

D - 忙碌的选课系统 Time Limit: 10000 ms        Memory Limit: 65536 KB Submit Description 每学期末,都是万众瞩目的选课时间,由于人数过多,某学校的服务器常常被无数的学生挤的爆掉,这是,教务系统大人说,你们选个课都这么慢,居然还怪我们.于是,每次教务系统都会在服务器快要瘫痪前关闭它.在无数学生的强烈抗议下,教务系统妥协了,再给每个人一次机会,但他让我们用最快的方式决定该选的课程,选上后就退出. 这让大一学渣狗犯了难,在新的选

POJ1420 Spreadsheet(拓扑排序)注意的是超内存

Spreadsheet Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 617   Accepted: 290 Description In 1979, Dan Bricklin and Bob Frankston wrote VisiCalc, the first spreadsheet application. It became a huge success and, at that time, was the ki

拓扑排序之变量序列算法分析

拓扑排序之变量序列 巧若拙(欢迎转载,但请注明出处:http://blog.csdn.net/qiaoruozhuo) 题目描述: 假设有n个变量(1<=n<=26,变量名用单个小写字母表示),还有m个二元组(u,v),分别表示变量u小于v.那么,所有变量从小到大排列起来应该是什么样子的呢? 例如有4个变量a,b,c,d,若以知a<b,c<b,d<c,则这4个变量的排序可能是a<d<c<b.尽管还有可能其他的可能,你只需找出其中的一个即可. 输入: 输入为一