递归算法浅谈

递归算法

  程序调用自身的编程技巧称为递归( recursion)。
  一个过程或函数在其定义或说明中又直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题类似的规模较小的问题来求解,递归策略仅仅需少量的程序就可描写叙述出解题过程所须要的多次反复计算,大大地降低了程序的代码量。
   注意:
   (1) 递归就是在过程或函数里调用自身;
   (2) 在使用递增归策略时,必须有一个明白的递归结束条件,称为递归出口。

  一个比較经典的描写叙述是老和尚讲故事,他说从前有座山,山上有座庙,庙里有个老和尚在讲故事,他说从前有座山,山上有座庙,庙里有个老和尚在讲故事,他说从前有座山, ……。这样没完没了地重复讲故事,直到最后老和尚烦了停下来为止。

  重复讲故事能够看成是重复调用自身,但假设不能停下来那就没有意义了,所以终于还要能停下来。递归的关键在于找出递归方程式和递归终止条件。即老和尚重复讲故事这种递归方程式要有,最后老和尚烦了停下来这种递归的终止条件也要有。

阶乘的算法能够定义成函数

当 n>0时,用 f(n-1)来定义 f(n),用 f(n-1-1)来定义 f(n-1)……,这是对递归形式的描写叙述。

当 n=0时, f(n)=1,这是递归结束的条件。

事实上全部的递归问题都能够看成是阶层问题

所要解决的整个问题(整个递归函数)看成是 f(n).在这个递归函数中要做到例如以下几点:

*1.写出递归的出口
  *2.解决当前要解决的问题-----相当与阶层问题中的(n)
  *3.递归下去(调用自身)解决同样的但规模要小的又一问题-----相当于f(n-1)

假设函数实现了这几点,那么递归算法也就基本成功.

只是有些问题他的f(n-1)可能要调用几次(可能每次的參数还不同),由于他在实现(n)的时候要先调用f(n-1)为前提,

这种样例非常多.比方梵塔问题就是这种情况.

总而言之,你要懂的把复杂的递归问题迁移成简单的阶层递归问题,这时候问题就比較好理解和解决.

以下是几个用递归解决这个问题的几个样例

一.用递归的算法把数组中的N个数按颠倒的次序又一次存放。

经过上面的方法来分析得出程序例如以下:

package sf.digui;

public class Recursion{
 private int b[]=null;
 private int len=0;
 public Recursion(int b[]){
  this.b=b;
  this.len=b.length;
  }
  
  public void resevert(int i,int j){
   if(i>=j) return;
   //====================
   b[i]=b[i]+b[j];
   b[j]=b[i]-b[j];//注意:这里没有通过第三方(另开内存)来实现两个变量的值交换
   b[i]=b[i]-b[j];
   //=========================
   
   resevert(i+1,j-1);
   }
   
   public void printThis(){
    
    for(int i=0;i<len;i++){
     System.out.print(b[i]+" ");
     
     }
     System.out.println();
    }
    
    
    public static void main(String[] args){
     int b[]={1,2,3,4,5,6,7,8,9};
     int len=b.length;
     Recursion rec=new Recursion(b);
     System.out.println("数组起始的数为:");
     rec.printThis();
     rec.resevert(0,len-1);
     System.out.println("数组经过倒转之后的数为:");
     rec.printThis();
     }
 }

二..用递归算法完毕:有52张牌,使它们所有正面朝上,第一轮是从第2张開始,凡是2的倍数位置上的牌翻成正面朝下;第二轮从第3张牌開始,凡是3的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上;第三轮从第4张牌開始,凡是4的倍数位置上的牌按上面同样规则翻转,以此类推,直到第一张要翻的牌超过52为止。统计最后有几张牌正面朝上,以及它们的位置号。

经过上面的方法分析,得出程序例如以下:

package sf.digui;

public class DiGui{
 private int n;
 //private int a;
 private int p[]=null;//存放全部牌的正反面信息
 public DiGui(int n){
  this.n=n;
  //a=n;
  p=new int[n];
  for(int i=0;i<n;i++){
   p[i]=0;//这里0表示是正面,1表示是反面
   }
  }
  
  
  public void process(int a){//======相当于f(n)
   int b=a;
   if(a==1) return;// 递归的出口
  //以下部分为解决当前要做的(能够从最后一步或第一步着手思考要做的事)---相当与(n)
  //===================================================    
    while(b<=n){//
     p[b-1]=(p[b-1]==0)?1:0;//
     b=2*b;//
     }
  //====================================================  
    process(a-1);//调用自身,解决同样的但规模要小的又一问题---相当于f(n-1)
    
    
   }
   
   public void printThis(){
    process(n);
    for(int i=0;i<n;i++){
     System.out.println("第"+(i+1)+"张的正反面序号为:"+p[i]);
     }
    }
    
    
    public static void main(String[] args){
     DiGui digui=new DiGui(52);
     digui.printThis();
     }
 }
 
 
 /*说明:
  *我觉得全部递归都可看成像阶层一样的问题---相当于f(n)=n+f(n-1),都要做递归函数中
  *解决例如以下几个问题:
  *1.写出递归的出口
  *2.解决当前要解决的问题-----相当与阶层问题中的(n)
  *3.递归下去(调用自身)解决同样的但规模要小的又一问题-----相当于f(n-1)
  *
  *
  *要学会把复杂的递归问题迁移成像阶层一样简单的递归问题

**/

以上是我学习递归的一些想法,希望有很多其它人回复,大家一起来谈论,交流,共同进步.

递归算法浅谈,布布扣,bubuko.com

时间: 2024-11-05 13:38:11

递归算法浅谈的相关文章

.net中对象序列化技术浅谈

.net中对象序列化技术浅谈 2009-03-11 阅读2756评论2 序列化是将对象状态转换为可保持或传输的格式的过程.与序列化相对的是反序列化,它将流转换为对象.这两个过程结合起来,可以轻松地存储和传输数 据.例如,可以序列化一个对象,然后使用 HTTP 通过 Internet 在客户端和服务器之间传输该对象.反之,反序列化根据流重新构造对象.此外还可以将对象序列化后保存到本地,再次运行的时候可以从本地文件 中“恢复”对象到序列化之前的状态.在.net中有提供了几种序列化的方式:二进制序列化

浅谈——页面静态化

现在互联网发展越来越迅速,对网站的性能要求越来越高,也就是如何应对高并发量.像12306需要应付上亿人同时来抢票,淘宝双十一--所以,如何提高网站的性能,是做网站都需要考虑的. 首先网站性能优化的方面有很多:1,使用缓存,最传统的一级二级缓存:2,将服务和数据库分开,使用不同的服务器,分工更加明确,效率更加高:3,分布式,提供多台服务器,利用反向代理服务器nginx进行反向代理,将请求分散开来:4,数据库的读写分离,不同的数据库,将读操作和写操作分开,并实时同步即可:5,分布式缓存,使用memc

单页应用SEO浅谈

单页应用SEO浅谈 前言 单页应用(Single Page Application)越来越受web开发者欢迎,单页应用的体验可以模拟原生应用,一次开发,多端兼容.单页应用并不是一个全新发明的技术,而是随着互联网的发展,满足用户体验的一种综合技术. SEO 一直以来,搜索引擎优化(SEO)是开发者容易忽略的部分.SEO是针对搜索(Google.百度.雅虎搜索等)在技术细节上的优化,例如语义.搜索关键词与内容相关性.收录量.搜索排名等.SEO也是同行.市场竞争常用的的营销手段.Google.百度的搜

浅谈html标签

浅谈html各常用标签用法 标题标签:<h1>-<h6>来表示,使标题字体变粗. <br />换行标记 <hr />水平分隔符 &nbsp空格符 &copy版权符 <a href>a标签超链接 href可接链接地址 <p>段落标签<blockquote>引用标签及可用做缩进 <table>表格中的<ul>无序列表<ol>有序列表<dl>自定义列表<row

浅谈二维中的树状数组与线段树

一般来说,树状数组可以实现的东西线段树均可胜任,实际应用中也是如此.但是在二维中,线段树的操作变得太过复杂,更新子矩阵时第一维的lazy标记更是麻烦到不行. 但是树状数组在某些询问中又无法胜任,如最值等不符合区间减法的询问.此时就需要根据线段树与树状数组的优缺点来选择了. 做一下基本操作的对比,如下图. 因为线段树为自上向下更新,从而可以使用lazy标记使得矩阵的更新变的高校起来,几个不足就是代码长,代码长和代码长. 对于将将矩阵内元素变为某个值,因为树状数组自下向上更新,且要满足区间加法等限制

[nRF51822] 14、浅谈蓝牙低功耗(BLE)的几种常见的应用场景及架构(科普类干货)

蓝牙在短距离无线通信领域占据举足轻重的地位—— 从手机.平板.PC到车载设备, 到耳机.游戏手柄.音响.电视, 再到手环.电子秤.智能医疗器械(血糖仪.数字血压计.血气计.数字脉搏/心率监视器.数字体温计.耳温枪.皮肤水分计等), 再到智能家居等领域均占有一席之地. 而蓝牙低功耗(BLE)是在蓝牙4.0协议上修改以适用低功耗应用场景的一种蓝牙协议. 随着上一股智能消费类电子大潮的到来,BLE的各种应用也像雨后春笋般在市场上铺开. 如果想 紧跟蓝牙协议的最新动态 ,可以在https://www.b

浅谈C++容器动态内存管理的优化

在信息学竞赛中,C++的容器的用途非常广泛,但经常因常数过大而超时.怎样才能提高它们的效率呢? 我们知道,容器是存储同一类对象的对象,既然"对象"我们无法改变,那么我们只能从"存储"入手,不难想到,不同容器在实现上的根本区别是它们对应着不同的内存组织方式,内存管理无疑是这种实现的核心,所以优化内存管理是加快容器效率的最好途径之一. 一.内存分配器简介 怎样才能优化内存管理呢?很简单,C++为我们提供了这样的接口,我们可以通过自定义容器模板中的最后一个allocato

张小龙浅谈微信公众平台的意义

腾讯高级副总裁张小龙表示:微信公众平台,就是在移动互联网时代,让企业和个人以更简捷的形式提供服务给有需要的人. 张小龙浅谈微信公众平台的意义,布布扣,bubuko.com

浅谈数据库系统中的cache(转)

http://www.cnblogs.com/benshan/archive/2013/05/26/3099719.html 浅谈数据库系统中的cache(转) Cache和Buffer是两个不同的概念,简单的说,Cache是加速"读",而buffer是缓冲"写",前者解决读的问题,保存从磁盘上读出 的数据,后者是解决写的问题,保存即将要写入到磁盘上的数据.在很多情况下,这两个名词并没有严格区分,常常把读写混合类型称为buffer cache,本文后续的论述中,统一