快速乘模板(以取模)

快速乘是为了防止在乘的时候溢出(即使使用了同余模定理,还是会溢出),但这种情况比较少见,但还是有的,所以会用到快速乘

1 long long mult(long long A,long long B)
2 {
3     long long z = 0;
4     if (B == 0) return z;
5     z = mult(A,B >> 1);
6     z = (z << 1) % mod;
7     if (B & 1) z = (z + A) %mod;
8     return z;
9 }
时间: 2024-09-30 16:05:51

快速乘模板(以取模)的相关文章

HDU 5895 矩阵快速幂+高次幂取模

HDU 5895 Mathematician QSC 题意:已知f(n)=2*f(n-1)+f(n-2), g(n)=∑f(i)²(0<=i<=n), 给出n,x,y,s, 求x^(g(n*y))%(s+1); 思路:OEIS查到了g(n)=f(n)*f(n+1)/2, f(n)可以用矩阵快速幂求得, 有一个定理可以用于高次幂取模 x^n %k=x^(n%phi(k)+phi(k)) %k, 此处phi(x)为欧拉函数,但是在对幂次取模时存在一个除2, 又因为(a/b)%k=(a%bk)/b,

FZU 1759-Super A^B mod C(快速幂+大整数取模+欧拉函数)

题目链接:点击打开链接 题意:计算 a^b %c 但其中b很大,可能会达到10^1000000, 故有降幂公式 a^b %c= a^(b%phi(c)+phi(c)) %c  (b>=phi(c)) #include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <string> #include <cctype> #

模板 快速幂取模

[模板]快速幂取模 1 long long quickmod(long long a,long long b,long long m) 2 { 3 long long ans = 1; 4 while(b)//用一个循环从右到左便利b的所有二进制位 5 { 6 if(b&1)//判断此时b[i]的二进制位是否为1 7 { 8 ans = (ans*a)%m;//乘到结果上,这里a是a^(2^i)%m 9 b--;//把该为变0 10 } 11 b/=2; 12 a = a*a%m; 13 } 1

【模板】快速幂取模

快速幂取模的模板,要注意所有变量都要开成long long类型的防溢出: #include<cstdio> #include<algorithm> #include<cstring> typedef long long LL; const LL mod=1e9+7; using namespace std; LL a,b; LL mi(LL x,LL y) { LL res=1; while(y){ if(y&1) res=res*x%mod; y>>

CodeForces 450B (矩阵快速幂模板题+负数取模)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51919 题目大意:斐波那契数列推导.给定前f1,f2,推出指定第N项.注意负数取模的方式:-1%(10^9+7)=10^9+6. 解题思路: 首先解出快速幂矩阵.以f3为例. [f2]  * [1 -1] = [f2-f1]=[f3]  (幂1次) [f1]  * [1  0]     [f2]      [f2] 于是fn=[f2] *[1 -1]^(n-2)

快速幂取模算法【模板】

快速幂取模其实是a^b%c,这就是著名的RSA公钥加密的方法,当a,b都很大的时候,直接求是不可取的,所以就用到了快速幂取模. 首先你得明白他的原理,其实是用到了二分的思想,把b按照二进制展开 b = p(n)*2^n  +  p(n-1)*2^(n-1)  +-+   p(1)*2  +  p(0).其中p(i) (0<=i<=n)为 0 或 1. 所以此时a^b =  a^ (p(n)*2^n  +  p(n-1)*2^(n-1)  +...+  p(1)*2  +  p(0))=  a^

快速幂取模和快乘取模

一.快速幂取模概念 快速幂取模,顾名思义,就是快速的求一个幂式的模(余),比如a^b%c,快速的计算出这个式子的值. 在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快.计算范围更大的算法,产生了快速幂取模算法. 二.快速幂取模算法实现 1)很容易能想到,循环b次,每次乘a,最后对c取余就可以了. int ans = 1; for(int i = 1; i<=b; i++) { ans = ans * a; } ans = ans % c; 这个朴素算法的问题是: 1.如果a和b

HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)

传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/details/52577212 [分析]一开始想简单了,对于a^x mod p这种形式的直接用欧拉定理的数论定理降幂了 结果可想而知,肯定错,因为题目并没有保证gcd(x,s+1)=1,而欧拉定理的数论定理是明确规定的 所以得另谋出路 那么网上提供了一种指数循环节降幂的方法 具体证明可以自行从网上找一找 有

HDU6128 二次剩余/二次域求二次剩余解/LL快速乘法取模

LINK 题意:求满足模p下$\frac{1}{a_i+a_j}\equiv\frac{1}{a_i}+\frac{1}{a_j}$的对数,其中$n,p(1\leq n\leq10^5,2\leq p\leq10^{18})$ 思路:推式子,两边同乘$(a_i + a_j)^3$,得$a_i^2+a_j^2 \equiv {a_i·a_j} \mod{p}$,进一步$a_i^2+a_j^2+a_i·a_j\equiv {0} \mod{p}$,然后?然后会点初中数竞,或者数感好会因式分解就能看出

快速幂取模总结

大白书上说的是模运算..而且给出了递归版的代码..我觉得还是非递归的好..而且加上了位运算,速度更快.下面是快速幂取模模板. 模板: LL quickpow(LL n, LL m, int mod) { LL ans=1; while(m>0) { if(m&1) ans=ans*n%mod; m=m >> 1; n=n*n%mod; } return ans; } 练习题目: HDU 1061 hdu 2035 快速幂取模总结