0 1背包问题 (内有题目列表)

问题描述:一个背包可承重W,现有n件东西,东西 i 的价值为 vi,重量为wi。现在从这n件东西中拿出几件装到背包中,问可获得的最大价值?

举例:W = 3, n = 3;

东西的价值

vi  wi
3  4

4  5

5  6

DP的解法:

先从递归的角度理解这个问题,然后在贴上非递归的模板。

现在为东西编号:0 1 2 3 …n-1;我们先从n-1开始(其实从哪一端开始都无所谓,不要在意这些细节),我其实不觉得这个算法属于DP的,不管这个了。

Make(i,j) = max{Make(i-1,j-w[i])+v[i](取编号为 i 的东西),Make(i-1,j)(没有取编号为i的产品)}

时间: 2024-10-14 04:50:04

0 1背包问题 (内有题目列表)的相关文章

poj 动态规划题目列表及总结

此文转载别人,希望自己能够做完这些题目! 1.POJ动态规划题目列表 容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276,1322, 1414, 1456, 1458, 1609, 1644, 1664, 1690, 1699, 1740(博弈),1742, 1887, 1926(马尔科夫矩阵,求平衡), 1936, 1952, 1953, 1958, 1959, 1962, 1975,

Python内置数据结构——列表list,元组tuple

内置数据结构分类: 数值型 int , float , complex , bool 序列对象 字符串 str 列表 list tuple(元组) 键值对 集合 set 字典 dict 数字型 int ,float , complex , bool都是class, 1,5.0 , 2+3j都是对象的实例 int : python3的int就是长整型,没有大小限制,受限于内存大小 float:有整数部分和小数部分组成,支持十进制和科学计数法表示,只有双精度型 complex:有实数和虚部组成,实部

[Learn AF3] App Framework 3.0中的内置矢量图标

AF3的内置矢量图标 介绍:要使用af3中的图标,必须首先引入icon.css,由于文件中已经内置了字体文件数据,因此不需要引入字体文件支持. <link rel="stylesheet" type="text/css" href="js/af3.0/icons.min.css" /> 使用:引入icon.css文件之后,我们就可以通过给需要显示图标的元素添加css类名来显示图标(实际上就是一个矢量字符),注意需要同时添加icon 和

背包问题:0/1背包问题 普通背包问题(贪心算法只适用于普通背包问题)

//sj和vj分别为第j项物品的体积和价值,W是总体积限制. //V[i,j]表示从前i项{u1,u2,…,un}中取出来的装入体积为j的背包的物品的最大价值. 第一种:0/1背包问题 最大化 ,受限于  1)若i=0或j=0,  V[i,j] = 0 2)若j<si, V[i,j] = V[i-1,j] 3)若i>0且j>=si, V[i,j] = Max{V[i-1,j],V[i-1,j-si]+vi} 第二种:背包问题:在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部

java的byte数组转换成在[0,255]范围内

C#的byte    是 0-255java的byte  是 -128-127  java的byte数组转换成在[0,255]范围内int data[]= new int[bytes.length];for(int i=0;i<bytes.length;i++) { data[i] = bytes[i] & 0xff;}

06悍马H2 6.0 黑色灰白内 两把钥匙

06悍马H2 6.0 黑色灰白内 两把钥匙 更多车型请关注微信&QQ:777850

0/1背包问题(回溯法)

回溯法是一个既带有系统性又带有跳跃性的搜索算法.它在包含问题的所有解的解空间树中,按深度优先策略,从根结点出发搜索解空间树.算法搜索至解空间树的任意一结点时,先判断该结点是否包含问题的解.如果肯定不包含,则跳过对该结点为根的子树搜索,逐层向其祖先结点回溯:否则 ,进入该子树,继续按深度优先策略搜索. 问题的解空间 用回溯法解问题时,应明确定义问题的解空间.问题的解空间至少包含问题的一个(最优)解.对于 n=3 时的 0/1 背包问题,可用一棵完全二叉树表示解空间,如图所示: 求解步骤 1)针对所

0/1背包问题的动态规划法求解 —— Java 实现

0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进对动态规划法机制的理解和掌握. 值得提及的一个问题是,在用 JAVA 实现时, 是按算法模型建模,还是用对象模型建模呢? 如果用算法模型,那么 背包的值.重量就直接存入二个数组里:如果用对象模型,则要对背包以及背包问题进行对象建模.思来想去,还是采用了对象模型,尽管心里感觉算法模型似乎更好一些.有时确实就是这样,对象模型虽然现在很主流,但也不是万能的,采用

动态规划算法实现部分——0/1背包问题

代码: import java.util.*; import java.util.Scanner; /* *动态规划思想解决0/1背包问题 */ public class Main{ public static void main(String[] args){ Scanner in=new Scanner(System.in); System.out.println("输入背包的容量"); int bagCap=in.nextInt(); //背包的容量 System.out.pri