http://hadoop.apache.org/docs/r1.0.4/cn/hdfs_design.html#%E7%A1%AC%E4%BB%B6%E9%94%99%E8%AF%AF 时间: 2024-12-15 01:56:04
Hadoop学习笔记(4) ——搭建开发环境及编写Hello World 整个Hadoop是基于Java开发的,所以要开发Hadoop相应的程序就得用JAVA.在linux下开发JAVA还数eclipse方便. 下载 进入官网:http://eclipse.org/downloads/. 找到相应的版本进行下载,我这里用的是eclipse-SDK-3.7.1-linux-gtk版本. 解压 下载下来一般是tar.gz文件,运行: $tar -zxvf eclipse-SDK-3.7.1-linu
1.核心 HDFS 分布式文件系统 主从结构,一个namenoe和多个datanode, 分别对应独立的物理机器 1) NameNode是主服务器,管理文件系统的命名空间和客户端对文件的访问操作.NameNode执行文件系统的命名空间操作,比如打开关闭重命名文件或者目录等,它也负责数据块到具体DataNode的映射 2)集群中的DataNode管理存储的数据.负责处理文件系统客户端的文件读写请求,并在NameNode的统一调度下进行数据块的创建删除和复制工作. 3)NameNode是所有
Hadoop学习笔记(3) ——分布式环境搭建 前面,我们已经在单机上把Hadoop运行起来了,但我们知道Hadoop支持分布式的,而它的优点就是在分布上突出的,所以我们得搭个环境模拟一下. 在这里,我们采用这样的策略来模拟环境,我们使用3台ubuntu机器,1台为作主机(master),另外2台作为从机(slaver).同时,这台主机,我们就用第一章中搭建好的环境来. 我们采用与第一章中相似的步骤来操作: 运行环境搭建 在前面,我们知道,运行hadoop是在linux上运行的.所以我们单机就在
HDFS和MapReduce是Hadoop的两大核心.整个Hadoop体系结构主要是通过HDFS来实现分布式存储的底层支持的,并且通过MapReduce来实现分布式并行任务处理的程序支持. 一.HDFS体系结构 HDFS采用了主从(Master/Slave)结构模型.一个HDFS集群是由一个NameNode和若干个DataNode组成的.其中,NameNode作为主服务器,管理文件系统的命名空间和客户端对文件的访问操作:集群中的DataNode管理存储的数据.HDFS典型的部署是在一个专门的机器
转自:http://blog.csdn.net/wypblog/article/details/17528851 最近发现自己收集到的Hadoop学习资料有很多本,想想放在那里也浪费,所以觉得贴出来给大家分享,需要的可以去我CSDN里面下载,保证全部资源免费下载!这里面很多英文的资料. 1.<Hadoop技术内幕:深入解析Hadoop Common和HDFS>下载地址:http://download.csdn.net/detail/w397090770/6643259. 2.<Hadoo
自从2015年花了2个多月时间把Hadoop1.x的学习教程学习了一遍,对Hadoop这个神奇的小象有了一个初步的了解,还对每次学习的内容进行了总结,也形成了我的一个博文系列<Hadoop学习笔记系列>.其实,早在2014年Hadoop2.x版本就已经开始流行了起来,并且已经成为了现在的主流.当然,还有一些非离线计算的框架如实时计算框架Storm,近实时计算框架Spark等等.相信了解Hadoop2.x的童鞋都应该知道2.x相较于1.x版本的更新应该不是一丁半点,最显著的体现在两点: (1)H
实施Hadoop集群 --伪分布式安装 准备与配置安装环境 安装虚拟机和linux,虚拟机推荐使用vmware,PC可以使用workstation,服务器可以使用ESXi,在管理上比较方便.ESXi还可以通过拷贝镜像文件复制虚拟机,复制后自动修改网卡号和ip,非常快捷.如果只是实验用途,硬盘大约预留20-30G空间. 以Centos为例,分区可以选择默认[如果想要手动分区,请参考博客:http://blog.csdn.net/zjf280441589/article/details/175485
实施Hadoop集群 --分布式安装Hadoop 说明: 以Ubuntu配置为例,其中与CentOS不同之处会给出详细说明 现有三台服务器:其IP与主机名对应关系为: 192.168.139.129 master #NameNode/JobTrackerr结点 192.168.139.132 slave01 #DataNode/TaskTracker结点 192.168.139.137 slave02 #DataNode/TaskTracker结点 一.配置ssh实现Hadoop节点间用户的无密
阿里封神谈hadoop学习之路 封神 2016-04-14 16:03:51 浏览3283 评论3 发表于: 阿里云E-MapReduce >> 开源大数据周刊 hadoop 学生 spark 摘要: 在大数据时代,要想个性化实现业务的需求,还是得操纵各类的大数据软件,如:hadoop.hive.spark等.笔者(阿里封神)混迹Hadoop圈子多年,经历了云梯1.ODPS等项目,目前base在E-Mapreduce.在这,笔者尽可能梳理下hadoop的学习之路. 引言 当前,越来越多的同学进