The structure of Segment Tree is a binary tree which each node has two attributes start
and end
denote an segment / interval.
start and end are both integers, they should be assigned in following rules:
- The root‘s start and end is given by
build
method. - The left child of node A has
start=A.left, end=(A.left + A.right) / 2
. - The right child of node A has
start=(A.left + A.right) / 2 + 1, end=A.right
. - if start equals to end, there will be no children for this node.
Implement a build
method with a given array, so that we can create a corresponding segment tree with every node value represent the corresponding interval max value in the array, return the root of this segment tree.
Example
Given [3,2,1,4]
. The segment tree will be:
[0, 3] (max = 4)
/ [0, 1] (max = 3) [2, 3] (max = 4)
/ \ / [0, 0](max = 3) [1, 1](max = 2)[2, 2](max = 1) [3, 3] (max = 4)
Clarification
Segment Tree (a.k.a Interval Tree) is an advanced data structure which can support queries like:
- which of these intervals contain a given point
- which of these points are in a given interval
See wiki:
Segment Tree
Interval Tree
/** * Definition of SegmentTreeNode: * public class SegmentTreeNode { * public int start, end, max; * public SegmentTreeNode left, right; * public SegmentTreeNode(int start, int end, int max) { * this.start = start; * this.end = end; * this.max = max * this.left = this.right = null; * } * } */ public class Solution { /** *@param A: a list of integer *@return: The root of Segment Tree */ public SegmentTreeNode build(int[] A) { // write your code here if(A==null || A.length==0) return null; return build(A,0,A.length-1); } public SegmentTreeNode build(int[] A,int start,int end) { if(start>end) return null; SegmentTreeNode root=new SegmentTreeNode(start,end,Integer.MAX_VALUE); if(start==end) { root.max=A[start]; return root; } root.left=build(A,start,(start+end)/2); root.right=build(A,((start+end)/2)+1,end); int maxLeft=0; int maxRight=0; if(root.left!=null) { maxLeft=root.left.max; } else { maxLeft=Integer.MAX_VALUE; } if(root.right!=null) { maxRight=root.right.max; } else { maxRight=Integer.MAX_VALUE; } root.max=Math.max(maxLeft,maxRight); return root; } }
时间: 2024-12-11 08:23:46