name: "VGG_ILSVRC_19_layer" layer { name: "data" type: "ImageData" top: "data" top: "label" include { phase: TRAIN } image_data_param { batch_size: 12 source: "../../fine_tuning_data/HAT_fineTuning_data/train_data_fineTuning.txt" root_folder: "../../fine_tuning_data/HAT_fineTuning_data/train_data/" }} layer { name: "data" type: "ImageData" top: "data" top: "label" include { phase: TEST } transform_param { mirror: false } image_data_param { batch_size: 10 source: "../../fine_tuning_data/HAT_fineTuning_data/test_data_fineTuning.txt" root_folder: "../../fine_tuning_data/HAT_fineTuning_data/test_data/" }} layer { bottom:"data" top:"conv1_1" name:"conv1_1" type:"Convolution" convolution_param { num_output:64 pad:1 kernel_size:3 }}layer { bottom:"conv1_1" top:"conv1_1" name:"relu1_1" type:"ReLU" }layer { bottom:"conv1_1" top:"conv1_2" name:"conv1_2" type:"Convolution" convolution_param { num_output:64 pad:1 kernel_size:3 }}layer { bottom:"conv1_2" top:"conv1_2" name:"relu1_2" type:"ReLU" }layer { bottom:"conv1_2" top:"pool1" name:"pool1" type:"Pooling" pooling_param { pool:MAX kernel_size:2 stride:2 }}layer { bottom:"pool1" top:"conv2_1" name:"conv2_1" type:"Convolution" convolution_param { num_output:128 pad:1 kernel_size:3 }}layer { bottom:"conv2_1" top:"conv2_1" name:"relu2_1" type:"ReLU" }layer { bottom:"conv2_1" top:"conv2_2" name:"conv2_2" type:"Convolution" convolution_param { num_output:128 pad:1 kernel_size:3 }}layer { bottom:"conv2_2" top:"conv2_2" name:"relu2_2" type:"ReLU" }layer { bottom:"conv2_2" top:"pool2" name:"pool2" type:"Pooling" pooling_param { pool:MAX kernel_size:2 stride:2 }}layer { bottom:"pool2" top:"conv3_1" name: "conv3_1" type:"Convolution" convolution_param { num_output:256 pad:1 kernel_size:3 }}layer { bottom:"conv3_1" top:"conv3_1" name:"relu3_1" type:"ReLU" }layer { bottom:"conv3_1" top:"conv3_2" name:"conv3_2" type:"Convolution" convolution_param { num_output:256 pad:1 kernel_size:3 }}layer { bottom:"conv3_2" top:"conv3_2" name:"relu3_2" type:"ReLU" }layer { bottom:"conv3_2" top:"conv3_3" name:"conv3_3" type:"Convolution" convolution_param { num_output:256 pad:1 kernel_size:3 }}layer { bottom:"conv3_3" top:"conv3_3" name:"relu3_3" type:"ReLU" }layer { bottom:"conv3_3" top:"conv3_4" name:"conv3_4" type:"Convolution" convolution_param { num_output:256 pad:1 kernel_size:3 }}layer { bottom:"conv3_4" top:"conv3_4" name:"relu3_4" type:"ReLU" }layer { bottom:"conv3_4" top:"pool3" name:"pool3" type:"Pooling" pooling_param { pool:MAX kernel_size: 2 stride: 2 }}layer { bottom:"pool3" top:"conv4_1" name:"conv4_1" type:"Convolution" convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layer { bottom:"conv4_1" top:"conv4_1" name:"relu4_1" type:"ReLU" }layer { bottom:"conv4_1" top:"conv4_2" name:"conv4_2" type:"Convolution" convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layer { bottom:"conv4_2" top:"conv4_2" name:"relu4_2" type:"ReLU" }layer { bottom:"conv4_2" top:"conv4_3" name:"conv4_3" type:"Convolution" convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layer { bottom:"conv4_3" top:"conv4_3" name:"relu4_3" type:"ReLU" }layer { bottom:"conv4_3" top:"conv4_4" name:"conv4_4" type:"Convolution" convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layer { bottom:"conv4_4" top:"conv4_4" name:"relu4_4" type:"ReLU" }layer { bottom:"conv4_4" top:"pool4" name:"pool4" type:"Pooling" pooling_param { pool:MAX kernel_size: 2 stride: 2 }}layer { bottom:"pool4" top:"conv5_1" name:"conv5_1" type:"Convolution" convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layer { bottom:"conv5_1" top:"conv5_1" name:"relu5_1" type:"ReLU" }layer { bottom:"conv5_1" top:"conv5_2" name:"conv5_2" type:"Convolution" convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layer { bottom:"conv5_2" top:"conv5_2" name:"relu5_2" type:"ReLU" }layer { bottom:"conv5_2" top:"conv5_3" name:"conv5_3" type:"Convolution" convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layer { bottom:"conv5_3" top:"conv5_3" name:"relu5_3" type:"ReLU" }layer { bottom:"conv5_3" top:"conv5_4" name:"conv5_4" type:"Convolution" convolution_param { num_output: 512 pad: 1 kernel_size: 3 }}layer { bottom:"conv5_4" top:"conv5_4" name:"relu5_4" type:"ReLU" }layer { bottom:"conv5_4" top:"pool5" name:"pool5" type:"Pooling" pooling_param { pool:MAX kernel_size: 2 stride: 2 }}layer { bottom:"pool5" top:"fc6_" name:"fc6_" type:"InnerProduct" inner_product_param { num_output: 4096 }}layer { bottom:"fc6_" top:"fc6_" name:"relu6" type:"ReLU" }layer { bottom:"fc6_" top:"fc6_" name:"drop6" type:"Dropout" dropout_param { dropout_ratio: 0.5 }}layer { bottom:"fc6_" top:"fc7" name:"fc7" type:"InnerProduct" inner_product_param { num_output: 4096 }}layer { bottom:"fc7" top:"fc7" name:"relu7" type:"ReLU" }layer { bottom:"fc7" top:"fc7" name:"drop7" type:"Dropout" dropout_param { dropout_ratio: 0.5 }}layer { bottom:"fc7" top:"fc8_" name:"fc8_" type:"InnerProduct" inner_product_param { num_output: 27 }} layer { name: "sigmoid" type: "Sigmoid" bottom: "fc8_" top: "fc8_"} layer { name: "accuracy" type: "Accuracy" bottom: "fc8_" bottom: "label" top: "accuracy" include { phase: TEST } } layer { name: "loss" type: "EuclideanLoss" bottom: "fc8_" bottom: "label" top: "loss"}
时间: 2024-10-26 20:58:47