【算法学习笔记】25.贪心法 均分纸牌问题的分析

贪心法:

贪?算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。

贪心算法不是对所有问题都能得到整体最优解,关键是贪?心策略的选择,选择的贪?策略必须具备?后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。

太概念化了。总结起来三点:

可行性:必须满足问题的约束

局部最优:当前步骤中所有可行的选择里最佳的局部选择。

不可取消:选择一旦做出,后面的步骤就无法改变。

问题要具有贪心选择性:问题的最优解可以通过一系列的局部最优选择来达到。(最重要的一步,决定这个问题是否可以用贪心法来解决,此处的解决特指找到最优解)。

最优子结构性质:指一个问题的最优解一定要包含子问题的最优解。

贪心和DP的差别在哪呢,首先他萌确实都有最优子结构的性质,但是DP通常是以自底向上的方式解决各个子问题(如22中的整装待发问题就是从底部的每一层逐渐建立起那个二维数组),而贪心的方法通常是自顶向上的。

均分纸牌问题的分析:

均分纸牌问题:有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。

  移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。

  现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

  例如 N=4,4 堆纸牌数分别为:

  ① 9 ② 8 ③ 17 ④ 6

  移动3次可达到目的:

  从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

先放代码在分析吧,代码比较短。

int main(){
    int N;
    int pokers[MAX];
    cin>>N;
    int total = 0;
    for (int i=0; i<N; i++) {
        cin>>pokers[i];
        total+=pokers[i];
    }
    int avg = total/N,times=0;
    for(int i=0;i<N;i++){
        if(pokers[i]!=avg){
            pokers[i+1] -= avg - pokers[i];
            times++;
        }
    }
    cout<<times<<endl;
}

可以看到最核心的那个循环的思想是这样的:

从第一堆牌开始处理,如果第一堆牌整好是avg那么就放在一边不管了。

如果第一堆牌不是avg,那么就要把第二堆牌(合法的移动只有从2移到1,这也是这个算法的精髓之处)移动几张到第一堆,恰好使第一堆等于avg,从而只考虑第二堆开始到第N堆为止这些堆如何搞的子问题。然后依次递归下去。

这里的一个小技巧是认为牌数可以为负数,这样才能继续下去。综上,这个步骤是合理的。但是看不出来是最优的。可见,贪心法确实是比较容易实现,因为比较符合人类直觉,但是不好证明。

再反过来看一下前面提到的几点,可行性满足,不可取消,每一次操作都是直接赋值,局部最优,当前情况下,只能从右往左移动,且贪心地想尽快让第一堆满足约束。

至于为什么是最优解,(最少的步骤),要看这个问题到底是不是具有贪心选择性的。也就是看是不是全局最优解是由局部最优解产生的。对于这个事情,需要严格的数学证明才行。

http://www.zhihu.com/question/27883948 在知乎上问了这个问题。

时间: 2024-10-03 22:40:03

【算法学习笔记】25.贪心法 均分纸牌问题的分析的相关文章

算法学习笔记 最短路

图论中一个经典问题就是求最短路,最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划,这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是很好理解的,理解透自己多默写几次即可记住,机试时主要的工作往往就是快速构造邻接矩阵了. 对于平时的练习,一个很厉害的 ACMer  @BenLin_BLY 说:"刷水题可以加快我们编程的速度,做经典则可以让我们触类旁通,初期如果遇见很多编不出,不妨就写伪代码,理思路,在纸上进行整体分析和一步步的演算

[算法学习笔记]直接插入排序笔记

直接插入排序概念: 带排元素放在elem[0...n-1]中,初始化时,elem[0]自成1个有序区,无序区为elem[1...n-1],从i=1起,到i=n-1,依次将elem[i]插入有序区[0...n-1]中 直接插入排序算法步骤: 1.在当前有序区域R[1,i-1]中查找R[i]的正确插入位置K(1<=K<=i-1) 2.将R[K,i-1]中的记录均向后移动 3.移动后腾出K位置,插入R[i] (最坏)时间复杂度:O(n^2) 空间复杂度:O(1) /// <summary>

【贪心】均分纸牌

问题 B: [贪心]均分纸牌 时间限制: 1 Sec  内存限制: 64 MB提交: 39  解决: 18[提交][状态][讨论版] 题目描述 有N堆纸牌,编号分别为1,2,…,N.每堆上有若干张,但纸牌总数必为N的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为1堆上取的纸牌,只能移到编号为2的堆上:在编号为N的堆上取的纸牌,只能移到编号为N-1的堆上:其他堆上取的纸牌,可以移到相邻左边或右边的堆上. 现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多. 例如

算法学习笔记 递归之 快速幂、斐波那契矩阵加速

递归的定义 原文地址为:http://blog.csdn.net/thisinnocence 递归和迭代是编程中最为常用的基本技巧,而且递归常常比迭代更为简洁和强大.它的定义就是:直接或间接调用自身.经典问题有:幂运算.阶乘.组合数.斐波那契数列.汉诺塔等.其算法思想: 原问题可分解子问题(必要条件): 原与分解后的子问题相似(递归方程): 分解次数有限(子问题有穷): 最终问题可直接解决(递归边界): 对于递归的应用与优化,直接递归时要预估时空复杂度,以免出现用时过长或者栈溢出.优化递归就是以

EM算法学习笔记2:深入理解

文章<EM算法学习笔记1:简介>中介绍了EM算法的主要思路和流程,我们知道EM算法通过迭代的方法,最后得到最大似然问题的一个局部最优解.本文介绍标准EM算法背后的原理. 我们有样本集X,隐变量Z,模型参数θ,注意他们3个都是向量,要求解的log似然函数是lnp(X|θ),而这个log似然函数难以求解,我们假设隐变量Z已知,发现lnp(X,Z|θ) 的最大似然容易求解. 有一天,人们发现引入任意一个关于隐变量的分布q(Z),对于这个log似然函数,存在这样一个分解: lnp(X|θ)=L(q,θ

算法学习 - HashTable开放地址法解决哈希冲突

开放地址法解决哈希冲突 线性开放地址法 线性开放地址法就是在hash之后,当发现在位置上已经存在了一个变量之后,放到它下一个位置,假如下一个位置也冲突,则继续向下,依次类推,直到找到没有变量的位置,放进去. 平方开放地址法 平方地址法就是在hash之后,当正确位置上存在冲突,不放到挨着的下一个位置,而是放到第2^0位置,假如继续冲突放到2^1的位置,依次2^3... 直到遇到不冲突的位置放进去. 双散列开放地址法 双散列同上,不过不是放到2^的位置,而是放到key - hash(key, tab

算法学习笔记 KMP算法之 next 数组详解

最近回顾了下字符串匹配 KMP 算法,相对于朴素匹配算法,KMP算法核心改进就在于:待匹配串指针 i 不发生回溯,模式串指针 j 跳转到 next[j],即变为了 j = next[j]. 由此时间复杂度由朴素匹配的 O(m*n) 降到了 O(m+n), 其中模式串长度 m, 待匹配文本串长 n. 其中,比较难理解的地方就是 next 数组的求法.next 数组的含义:代表当前字符之前的字符串中,有多大长度的相同前缀后缀,也可看作有限状态自动机的状态,而且从自动机的角度反而更容易推导一些. "前

八大排序算法学习笔记:冒泡排序

冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法. 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来.走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成.这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端. 算法原理: 比较相邻的元素.如果第一个比第二个大,就交换他们两个. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对.在这一点,最后的元素应该会是最大的数. 针对所有

由LCS到编辑距离—动态规划入门—算法学习笔记

一切计算机问题,解决方法可以归结为两类:分治和封装.分治是减层,封装是加层. 动态规划问题同样可以用这种思路,分治. 它可以划分为多个子问题解决,那这样是不是用简单的递归就完成了?也许是的,但是这样会涉及太多的不便的操作.因为子问题有重叠! 针对这种子问题有重叠的情况的解决,就是提高效率的关键. 所以动态规划问题可以总结为:最优子结构和重叠子问题. 解决这个子问题的方式的关键就是:memoization,备忘录. 动态规划算法分以下4个步骤: 描述最优解的结构 递归定义最优解的值 按自底向上的方