R语言正态性检验

R语言正态性检验

用R语言做正态分布检验 (2012-02-29 10:59:54)转载▼

摘自:吴喜之:《非参数统计》(第二版),中国统计出版社,2006年10月:P164-165

1、ks.test()
例如零假设为N(15,0.2),则ks.test(x,"pnorm",15,0.2)。如果不是正态分布,还可以选"pexp", "pgamma"等。
2、shapiro.test()
可以进行关于正态分布的Shapiro-Wilk检验。
3、nortest包
lillie.test()可以实行更精确的Kolmogorov-Smirnov检验。
ad.test()进行Anderson-Darling正态性检验。
cvm.test()进行Cramer-von Mises正态性检验。
pearson.test()进行Pearson卡方正态性检验。
sf.test()进行Shapiro-Francia正态性检验。
4、fBasics包
normalTest()进行Kolmogorov-Smirnov正态性检验。
ksnormTest()进行Kolmogorov-Smirnov正态性检验。
shapiroTest()进行Shapiro-Wilk‘s正态检验。
jarqueberaTest()进行jarque-Bera正态性检验。
dagoTest进行D‘Agostino正态性检验。
gofnorm采用13种方法进行检验,并输出结果。

附:网络上的一篇博文:
http://blog.sina.com.cn/s/blog_65efeb0c0100htz7.html
SPSS和SAS常用正态检验方法 
许多计量资料的分析方法要求数据分布是正态或近似正态,因此对原始独立测定数据进行正态性检验是十分必要的。
通过绘制数据的频数分布直方图来定性地判断数据分布正态性。这样的图形判断决不是严格的正态性检验,它所提供的信息只是对正态性检验的重要补充。
正态性检验主要有三类方法:
一、计算综合统计量
如动差法、夏皮罗-威尔克Shapiro-Wilk 法(W 检验) 、达戈斯提诺D′Agostino 法(D 检验) 、Shapiro-Francia 法(W′检验) .
二、正态分布的拟合优度检验
如皮尔逊χ2 检验 、对数似然比检验 、柯尔莫哥洛夫Kolmogorov-Smirov 法检验 .
三、图示法(正态概率图Normal Probability plot)
如分位数图(Quantile Quantileplot ,简称QQ 图) 、百分位数(Percent Percent plot ,简称PP 图) 和稳定化概率图(Stablized Probability plot ,简称SP 图) 等.
统计软件中常用的正态性检验方法
1、用偏态系数和峰态系数检验数据正态性
偏态系数Sk,它用于检验不对称性;峰态系数Ku,它用于检验峰态。 S k= 0, K u= 0 时, 分布呈正态, S k> 0 时, 分布呈正偏态,S k < 0 时, 分布呈负偏态。适用条件:样本含量应大于200
2、用夏皮罗-威尔克(Shapiro-Wilk)法检验数据正态性
即W检验,1965 年提出,适用于样本含量n ≤50 时的正态性检验;。
3、用达戈斯提诺(D′Agostino)法检验数据正态性
即D检验,1971提出,正态性D检验该方法效率高,是比较精确的正态检验法。
4、Shapiro-Francia 法
即W′检验,于1972 年提出,适用于50 < n < 100 时的正态性检验。
5、QQ图或PP图
散点聚集在固定直线的周围,可以认为数据资料近似服从正态分布
SPSS&SAS规则:
SPSS 规定:当样本含量3 ≤n ≤5000 时,结果以Shapiro - Wilk (W 检验) 为难,当样本含量n > 5000 结果以Kolmogorov - Smirnov 为准。
而SAS 规定:当样本含量n ≤2000 时,结果以Shapiro - Wilk (W 检验) 为准,当样本含量n >2000 时,结果以Kolmogorov - Smirnov (D 检验) 为准。
参考:
刘庆武,胡志艳,如何用SPSS、SAS 统计软件进行正态性检验,湘南学院学报(自然科学版),2005
朱红兵,何丽娟,在SPSS10.0 中进行数据资料正态性检验的方法,首都体育学院学报,2004

时间: 2024-10-10 09:20:01

R语言正态性检验的相关文章

R语言之正态性检验

数据的正态性是很多统计方法的基础,因此正态性检验也是必不可少的,下面介绍使用R进行正态性检验的几种方法1.Shaprio-Wilk检验用于比较样本数据与正态分布是否存在显著不同,使用Shapiro.test()函数实现,格式为Shapiro.test(data),要求data为向量格式. 2.Kolmogorov-Smirnov检验该检验用于比较两种分布是否相同,或者将样本与某已知分布进行比较,可以使用ks.test()函数实现,格式为ks.test(x,y...),其中x是想检验的向量,y是与

数据分析,R语言

数据结构 创建向量和矩阵 1 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 1 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 1 函数help() 生成向量 1 seq() 生成字母序列letters 新建向量 1 Which()函数,rev()函数,sort()函数 生成矩阵 1 函数matrix() 矩阵运算 1 函数t(),矩阵加减 矩阵运算 1

使用R语言计算均值,方差等

R语言对于数值计算很方便,最近用到了计算方差,标准差的功能,特记录. 数据准备 height <- c(6.00, 5.92, 5.58, 5.92) 1 计算均值 mean(height) [1] 5.855 2 计算中位数 median(height) [1] 5.92 3 计算标准差 sd(height) [1] 0.1871719 4 计算方差 var(height) [1] 0.03503333 5 计算两个变量之间的相关系数 cor(height,log(height)) [1] 0

R语言快速上手入门

R语言快速上手入门 课程学习网址:http://www.xuetuwuyou.com/course/196 课程出自学途无忧网:http://www.xuetuwuyou.com 课程简介 本教程深入浅出地讲解如何使用R语言玩转数据.课程中涵盖R语言编程的方方面面,内容涉及R对象的类型.R的记号体系和环境系统.自定义函数.if else语句.for循环.S3类R的包系统以及调试工具等.本课程还通过示例演示如何进行向量化编程,从而对代码进行提速并尽可能地发挥R的潜能.本课程适合立志成为数据科学家的

R语言学习-词频分析

概念 1.语料库-Corpus 语料库是我们要分析的所有文档的集合,就是需要为哪些文档来做词频 2.中文分词-Chinese Word Segmentation 指的是将一个汉字序列切分成一个一个单独的词语. 3.停用词-Stop Words 数据处理的时候,自动过滤掉某些字或词,包括泛滥的词如Web.网站等,又如语气助词如的.地.得等. 需要加载的包 1.tm包 安装方式:install.packages("tm") 语料库: Corpus(x,readerControl) x-语料

R语言使用机器学习算法预测股票市场

quantmod 介绍 quantmod 是一个非常强大的金融分析报, 包含数据抓取,清洗,建模等等功能. 1. 获取数据 getSymbols 默认是数据源是yahoo 获取上交所股票为 getSymbols("600030.ss"), 深交所为 getSymbols("000002.sz").  ss表示上交所, sz表示深交所 2. 重命名函数 setSymbolLookup 3. 股息函数 getDividends 4. 除息调整函数 adjustOHLC

R语言数据挖掘实战系列(2)

二.R语言简介 R语言是一种为统计计算和图形显示而设计的语言环境,具有免费.多平台支持,同时可以从各种类型的数据源中导入数据,具有较高的开放性以及高水准的制图功能.R是一个体系庞大的应用软件,主要包括核心的R标准包和各专业领域的其他包.R在数据分析.数据挖掘领域具有特别优势. R安装 R可在其主页(https://www.r-project.org/)上获得,根据所选择的平台进行下载安装.安装完成之后启动R.为了方便使用R,可使用免费的图形界面编辑器RStudio,可从https://www.r

survival analysis 生存分析与R 语言示例 入门篇

生存分析,survival analysis,顾名思义是用来研究个体的存活概率与时间的关系.例如研究病人感染了病毒后,多长时间会死亡:工作的机器多长时间会发生崩溃等.  这里“个体的存活”可以推广抽象成某些关注的事件. 所以SA就成了研究某一事件与它的发生时间的联系的方法.这个方法广泛的用在医学.生物学等学科上,近年来也越来越多人用在互联网数据挖掘中,例如用survival analysis去预测信息在社交网络的传播程度,或者去预测用户流失的概率. R里面有很成熟的SA工具. 本文介绍生存分析的

用蒙特卡洛方法计算派-python和R语言

用蒙特卡洛方法算pi-基于python和R语言 最近follow了MOOC上一门python课,开始学Python.同时,买来了概率论与数理统计,准备自学一下统计.(因为被鄙视过不是统计专业却想搞数据分析) 有趣的是书里面有一块讲蒲丰投针计算Pi,这是一种随机模拟法,也就是蒙特卡洛法.蒲丰投针之于我太难,暂时没想到怎么用计算机模拟这一过程. python课中,老师也提到用随机模拟法,也就是蒙特卡洛法(MonteCarlo),用计算机模拟几千次实验,计算pi的近似值.好巧. 就拿python课中的