【BZOJ-4519】不同的最小割 最小割树(分治+最小割)

4519: [Cqoi2016]不同的最小割

Time Limit: 20 Sec  Memory Limit: 512 MB
Submit:
393  Solved: 239
[Submit][Status][Discuss]

Description

学过图论的同学都知道最小割的概念:对于一个图,某个对图中结点的划分将图中所有结点分成

两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。对于带权图来说,将

所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在

关于s,t的割中容量最小的割。

而对冲刺NOI竞赛的选手而言,求带权图中两点的最小割已经不是什么难事了。我们可以把

视野放宽,考虑有N个点的无向连通图中所有点对的最小割的容量,共能得到N(N−1)

2个数值。

这些数值中互不相同的有多少个呢?这似乎是个有趣的问题。

Input

输入文件第一行包含两个数N,M,表示点数和边数。接下来M行,每行三个数u,v,w,

表示点u和点v(从1开始标号)之间有条边权值是w。

1<=N<=850 1<=M<=8500 1<=W<=100000

Output

输出文件第一行为一个整数,表示个数。

Sample Input

4 4
1 2 3
1 3 6
2 4 5
3 4
4

Sample Output

3

HINT

Source

Solution

跟上一题的做法很像,分治最小割

记录答案即可,最后排序看看有多少不同的即可.....

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
    int x=0,f=1;char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
#define maxn 1000
#define maxm 100010
int n,m,q,t,ans[maxn],tot,id[maxn],tmp[maxn];
struct Edgenode{int next,to,cap;}edge[maxm];
int head[maxn],cnt=1;
void add(int u,int v,int w)
{cnt++; edge[cnt].to=v; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].cap=w;}
void insert(int u,int v,int w) {add(u,v,w); add(v,u,w);}
int dis[maxn],que[maxn<<1],cur[maxn],S,T;
bool bfs()
{
    memset(dis,-1,sizeof(dis));
    que[0]=S; dis[S]=0; int he=0,ta=1;
    while (he<ta)
        {
            int now=que[he++];
            for (int i=head[now]; i; i=edge[i].next)
                if (edge[i].cap && dis[edge[i].to]==-1)
                    dis[edge[i].to]=dis[now]+1,que[ta++]=edge[i].to;
        }
    return dis[T]!=-1;
}
int dfs(int loc,int low)
{
    if (loc==T) return low;
    int w,used=0;
    for (int i=cur[loc]; i; i=edge[i].next)
        if (edge[i].cap && dis[edge[i].to]==dis[loc]+1)
            {
                w=dfs(edge[i].to,min(low-used,edge[i].cap));
                edge[i].cap-=w; edge[i^1].cap+=w;
                used+=w; if (edge[i].cap) cur[loc]=i;
                if (used==low) return low;
            }
    if (!used) dis[loc]=-1;
    return used;
}
#define inf 0x7fffffff
int dinic()
{
    int tmp=0;
    while (bfs())
        {
            for (int i=1; i<=n; i++) cur[i]=head[i];
            tmp+=dfs(S,inf);
        }
    return tmp;
}
void init()
{
    cnt=1;
    memset(ans,0,sizeof(ans));
    memset(head,0,sizeof(head));
}
bool visit[maxn];
void DFS(int x)
{
    visit[x]=1;
    for (int i=head[x]; i; i=edge[i].next)
        if (edge[i].cap && !visit[edge[i].to])
            DFS(edge[i].to);
}
void work(int L,int R)
{
    if (L==R) return;
    for (int i=2; i<=cnt; i+=2)
        edge[i].cap=edge[i^1].cap=(edge[i].cap+edge[i^1].cap)>>1;
    S=id[L],T=id[R];
    int maxflow=dinic();
    memset(visit,0,sizeof(visit)); DFS(S);
    ans[++tot]=maxflow;
    int l=L,r=R;
    for (int i=L; i<=R; i++)
        if (visit[id[i]])
            tmp[l++]=id[i];
        else tmp[r--]=id[i];
    for (int i=L; i<=R; i++) id[i]=tmp[i];
    work(L,l-1); work(r+1,R);
}
int main()
{
    init();
    n=read(),m=read();
    for (int i=1; i<=n; i++) id[i]=i;
    for (int u,v,w,i=1; i<=m; i++)
    u=read(),v=read(),w=read(),insert(u,v,w);
    work(1,n);
    sort(ans+1,ans+tot+1);
    int an=1;
    for (int i=2; i<=tot; i++) if (ans[i]!=ans[i-1]) an++;
    printf("%d\n",an);
    return 0;
}

滚回来学校期中考试,考前就是不复习的刷水题1A的乐趣.....

时间: 2024-10-12 19:20:14

【BZOJ-4519】不同的最小割 最小割树(分治+最小割)的相关文章

BZOJ 3924 Zjoi2015 幻想乡战略游戏 动态树分治

题目大意:给定一棵树,每个点有一个点权,多次改变某个点的点权,多次查询带权重心到所有点的带权距离之和 此生无悔入东方,来世愿生幻想乡 首先我们考虑如何计算一个点到所有点的带权距离之和且支持修改 用动态树分治就好了嘛... 每个点记录子树中带权距离之和,以及权值之和,再在每个子树中记录一个需要减掉的版本 然后一直向上扫到根就能统计了 ↑这段话面对会写动态树分治的人,不会的先去切捉迷藏吧 然后就好搞了... 对于分治结构的每一个点,我们枚举它的出边 如果某条出边连向的点的距离之和小于当前点,那么答案

分治最小割 学习总结

这是一种可以较快的求解任意两点间最小割的算法 正常的暴力的话我们要枚举点对,一共要做O(n^2)次网络流 而我们注意到设某一个S->T最小割中两个点x,y,满足x在S集合且y在T集合中 设S->T的最小割为C,x->y的最小割为W 则一定有C>=W 若取得大于号,则x->y的最小割中一定有一个属于S集合点现在属于y集合或者一个属于T集合的点现在属于x集合 这样我们就可以分治处理并每次更新答案 实际上这样操作构成了一棵树,我们称之为最小割树,其任意两点的最小割等价于两点在树上路

hdu3452 无向树去掉最小的边集使任何叶子与根不连通 / 最小割

思路一下就上来了,叶子向汇点连边,inf保证不会成为割,跑根到汇点最小割即可.注意无向树双向建边.基础题,分分钟1A: #include<iostream> #include<queue> #include<cstdio> #include<cstring> #include<set> #include<vector> using namespace std; const int inf=0x3f3f3f3f; const int m

【BZOJ-4435】Juice Junctions 最小割树(分治+最小割)+Hash

4435: [Cerc2015]Juice Junctions Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 20  Solved: 11[Submit][Status][Discuss] Description 你被雇佣升级一个旧果汁加工厂的橙汁运输系统.系统有管道和节点构成.每条管道都是双向的,且每条管道的流量都是1升每秒.管道可能连接节点,每个节点最多可以连接3条管道.节点的流量是无限的.节点用整数1到n来表示.在升级系统之前,你需要对现有

bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流???一看路牌....分治最小割?最小割树? 然后开始各种%论文... 简单来说吧,根据各种本蒟蒻不会证明的理论,那么:所有最小割都不是完全独立的,总共有n-1种(也就是树上的n-1条边)最小割 恰好和树的定义一样啊! 那么用一个solve递归函数来解决,一开始任意找两个点作为st和ed来最小割,然后分

POJ3659 Cell Phone Network(树上最小支配集:树型DP)

题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. 树上的每个结点作为其子树的根可以有三个状态: 不属于支配集且还没被支配 不属于支配集但被其孩子支配 属于支配集 那么就是用dp[u][1\2\3]来表示动归的状态. 123转移该怎么转移就怎么转移..最后的结果就是min(dp[root][2],dp[root][3]). 要注意的是对于有些结点前2

Codeforces 618D Hamiltonian Spanning Tree(树的最小路径覆盖)

题意:给出一张完全图,所有的边的边权都是 y,现在给出图的一个生成树,将生成树上的边的边权改为 x,求一条距离最短的哈密顿路径. 先考虑x>=y的情况,那么应该尽量不走生成树上的边,如果生成树上有一个点的度数是n-1,那么必然需要走一条生成树上的边,此时答案为x+y*(n-2). 否则可以不走生成树上的边,则答案为y*(n-1). 再考虑x<y的情况,那么应该尽量走生成树上的边,由于树上没有环,于是我们每一次需要走树的一条路,然后需要从非生成树上的边跳到树的另一个点上去, 显然跳的越少越好,于

二分 [SWUST OJ 327] 最小的最大与最大的最小

最小的最大与最大的最小(0327) Time limit(ms): 2500 Memory limit(kb): 65535 Submission: 329 Accepted: 18 Description 又是一个数据处理题(>_<).还是直接看Input吧. Input 一组测试实例. Line 1:两个数n, m (1 <= n <= 1000000, 1 <= m <= 100000),n表示数字个数,m表示查询次数. Line 2:包含n个整数A(i)(0 &

求树的最小深度

/** * Definition for binary tree * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { private int mins=10000; public int minDepth(TreeNode root) { if(root==null) return