图像边缘检测——Sobel算子

边缘是图像最基本的特征,其在计算机视觉、图像分析等应用中起着重要的作用,这是因为图像的边缘包含了用于识别的有用信息,是图像分析和模式识别的主要特征提取手段。

1.何为“图像边缘”?

在图像中,“边缘”指的是临界的意思。一幅图像的“临界”表示为图像上亮度显著变化的地方,边缘指的是一个区域的结束,也是另一个区域的开始。“边缘点”指的是图像中具有坐标[x,y],且处在强度显著变化的位置上的点。

2.如何表示边缘检测?

在数学上,用导数来表示改变的快慢。基于此,有许多方法用于边缘检测,他们绝大部分可以划分为两类:基于查找的一类和基于零穿越的一类。基于查找的方法通过寻找图像一阶导数中的最大值和最小值来检测边界,通常将边界定位在梯度最大的方向(想想一阶导数的含义是图像变化的速度,最大的自然就是变化最显著的)。基于零穿越的方法通过寻找图像二阶导数零穿越来寻找边界,通常是Laplacian过零点或者非线性差分表示的过零点。

图像在数学上可看做是二维离散函数,图像梯度就是这个二维离散函数的求导。函数f(x,y)在(x,y)处的梯度为一个向量:

计算这个向量的大小为:通常为了提高效率,常近似表示为:
梯度的方向角为:

差分通常是微分在离散的函数中的等效运算,所以计算图像的梯度常使用差分。

3.Sobel算子

索贝尔算子(Sobel
operator)是图像处理中的算子之一,主要用于边缘检测。在技术上,它是一离散型差分算子,用来运算图像亮度函数的梯度之近似值
。在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量。

公式

该算子包含两组3X3的矩阵,分别为横向和纵向,将其与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。如果以A代表原始图像,Gx及Gy分别代表经横向及纵向边缘检测的图像,其公式如下:


具体计算如下:

Gx = (-1)*f(x-1, y-1) + 0*f(x,y-1) + 1*f(x+1,y-1)

+(-2)*f(x-1,y) + 0*f(x,y)+2*f(x+1,y)

+(-1)*f(x-1,y+1) + 0*f(x,y+1) + 1*f(x+1,y+1)

= [f(x+1,y-1)+2*f(x+1,y)+f(x+1,y+1)]-[f(x-1,y-1)+2*f(x-1,y)+f(x-1,y+1)]

Gy =1* f(x-1, y-1) + 2*f(x,y-1)+ 1*f(x+1,y-1)

+0*f(x-1,y) 0*f(x,y) + 0*f(x+1,y)

+(-1)*f(x-1,y+1) + (-2)*f(x,y+1) + (-1)*f(x+1, y+1)

= [f(x-1,y-1) + 2f(x,y-1) + f(x+1,y-1)]-[f(x-1, y+1) + 2*f(x,y+1)+f(x+1,y+1)]

其中f(a,b)表示图像(a,b)点的灰度值。

再由Gx和Gy求出▽f,如果▽f大于某一阈值,则认为点(x,y)为边缘点。

4.实践效果

我在vs2013中使用opencv库中的cvSobel()函数对输入图像进行了边缘检测。效果如下:

原图:

因为Sobel算子适用于灰度化后的图像,所以还需将原图灰度化:


Gx、Gy可以检测到边的存在,以及从暗到亮,从亮到暗的变化。仅计算|Gx|,产生最强的响应是正交与X轴的边,即得到垂直边缘;仅计算|Gy|,产生最强的响应是正交于Y轴的边,即得到水平边缘。

仅作水平方向求导(Gx):


可以看到得到很多垂直边缘。

仅作垂直方向求导(Gy):


可以看到得到很多水平边缘。

利用Gx和Gy求出▽f,即梯度向量,以其大小|▽f|画出的图如下:


当然,因为边缘检测对图像噪声比较敏感,最好对原图用高斯滤波器进行平滑处理再进行灰度化。我这里没有做这一步。

由于是新浪博客,相关的代码贴不出来,不过也都是些简单的调用而已,查查opencv的API手册就知道如何使用了。

时间: 2024-10-19 15:02:30

图像边缘检测——Sobel算子的相关文章

python-opencv-图像边缘检测Sobel算子

原文地址:https://www.cnblogs.com/liming19680104/p/12244651.html

学习 opencv---(11)OpenC 边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器

本篇文章中,我们将一起学习OpenCV中边缘检测的各种算子和滤波器--Canny算子,Sobel算子,Laplace算子以及Scharr滤波器.文章中包含了五个浅墨为大家准备的详细注释的博文配套源代码.在介绍四块知识点的时候分别一个,以及最后的综合示例中的一个.文章末尾提供配套源代码的下载. **** 给大家分享一个OpenCv中写代码是节约时间的小常识.其实OpenCv中,不用nameWindow,直接imshow就可以显示出窗口.大家看下文的示例代码就可以发现,浅墨在写代码的时候并没有用na

sobel算子边缘检测

图像边缘:经典的边缘提取方法是考察图像的每个像素在某个邻域内灰度的变化,利用边缘临近一阶或二阶方向导数变化规律,用简单的方法检测边缘.这种方法称为边缘检测局部算子法. 在计算机中一般采用离散的方法来求,并不会进行求到,这就产生了最基本的图像处理算子——sobel算子. 写了一半,占个坑...图片传不上了,心酸.

【OpenCV入门教程之十二】OpenCV边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器合辑

本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/25560901 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: [email protected] 写作当前博文时配套使用的OpenCV版本: 2.4.9 本篇文章中,我们将一起学习OpenCV中

OpenCV使用Sobel滤波器实现图像边缘检测

纯粹阅读,请移步OpenCV使用Sobel滤波器实现图像边缘检测 效果图 源码 KqwOpenCVFeaturesDemo Sobel滤波器也叫Sobel算子,与Canny边缘检测一样,需要计算像素的灰度梯度,只不过是换用另一种方式. 使用Sobel算子计算边缘的步骤 将图像转为灰度图像 // 原图置灰 Imgproc.cvtColor(src, grayMat, Imgproc.COLOR_BGR2GRAY); 计算水平方向灰度梯度的绝对值 Imgproc.Sobel(grayMat, gra

【opencv入门之九】Opencv边缘检测:Canny算子,Sobel算子,Laplace算子,Scharr滤波器

参考网站: http://blog.csdn.net/poem_qianmo/article/details/25560901 1.边缘检测步骤 1)滤波:边缘检测的算法主要是基于图像强度的一阶和二阶导数,但导数通常对噪声很敏感.( 通常用高斯滤波 ) 2)增强:增强边缘的基础是确定图像各点领域强度的变化值.增强算法可以将图像灰度点领域强度值有显著变化的点凸显出来.( 可以通过计算梯度幅值来确定 ) 3)检测:经过增强的图像,往往领域中有很多点的梯度值比较大,而特定的应用中,这些点并不是我们要找

Opencv对图像做边缘检测——canny算子

图像的边缘检测的原理是检测出图像中所有灰度值变化较大的点,而且这些点连接起来就构成了若干线条,这些线条就可以称为图像的边缘. Canny边缘检测算子是John F. Canny于 1986 年开发出来的一个多级边缘检测算法.Canny 边缘检测的数学原理和算法实现这里就不再了,有兴趣的读者可以查阅专业书籍,本文主要介绍如何在OpenCV中对图像进行Canny 边缘检测,下面就来看看这个函数的原型. 一. 主要函数 1.1 cvCanny 函数功能:采用Canny方法对图像进行边缘检测 函数原型:

sobel算子实现边缘检测及其c++实现及与matlab效果对比

这里增加了对边缘像素的补齐.sobel梯度分割抗噪性好,但是无法做到自动阈值,是其一大遗憾,matlab却解决的很好. //默认对8位位图进行处理 void Sobel(unsigned char *pIn, int width, int height, unsigned char *pOut) { //每行像素所占字节数,输出图像与输入图像相同 int lineByte=(width+3)/4*4; //申请输出图像缓冲区 pOut=new unsigned char[lineByte*hei

OpenCV——边缘检测(sobel算子、Laplacian算子、scharr滤波器)

1 #include <opencv2/opencv.hpp> 2 #include <iostream> 3 4 using namespace cv; 5 using namespace std; 6 7 8 int main(int argc, char** argv) 9 { 10 Mat src = imread("test.jpg"); 11 Mat dst, gray,grad_x, gray_y,abs_grad_x,abs_grad_y; 12