LeetCode120——Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 =
11).

Note:

Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

实现:

class Solution {

public:

int minimumTotal(vector<vector<int>>& triangle) {

int n = triangle.size();

for (int i=n-2; i >=0; i--) {

for (int j = 0; j < triangle[i].size(); j++) {

triangle[i][j] += triangle[i+1][j] < triangle[i+1][j+1] ? triangle[i+1][j] : triangle[i+1][j+1];

}

}

return triangle[0][0];

}

};

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-14 03:11:18

LeetCode120——Triangle的相关文章

【LeetCode120】Triangle[DP]

120. Triangle Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below. For example, given the following triangle [ [2], [3,4], [6,5,7], [4,1,8,3] ] The minimum path sum from top to b

(leetcode题解)Pascal&#39;s Triangle

Pascal's Triangle  Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] 题意实现一个杨辉三角. 这道题只要注意了边界条件应该很好实现出来,C++实现如下 vector<vector<int>> generate(int

Lab 1: Write a java program for the triangle problem and test the program with Junit.

Tasks: 1. Install Junit(4.12), Hamcrest(1.3) with Eclipse 将两个jar包添加到工程中 2. Install Eclemma with Eclipse 3. Write a java program for the triangle problem and test the program with Junit. [Description of triangle problem]Function triangle takes three i

Solution to Triangle by Codility

question: https://codility.com/programmers/lessons/4 we need two parts to prove our solution. on one hand, there is no false triangular. Given the array has been sorted, if A[i]+A[i+1]>A[i+2], we can prove the existence of the triangle. for array A i

LeetCode (13) Pascal&#39;s Triangle (杨辉三角 )

题目描述 Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, Return 从第三行开始,每行除了最左边和最右边两个数为1,其他数字都是上一行中相邻两个数字之和.根据上述规则可以写出下面的代码: class Solution { public: vector<vector<int> > generateRow1() { vector<in

UVA - 11437 - Triangle Fun (计算几何~)

UVA - 11437 Triangle Fun Time Limit: 1000MS Memory Limit: Unknown 64bit IO Format: %lld & %llu Submit Status Description Problem A Triangle Fun Input: Standard Input Output: Standard Output In the picture below you can see a triangle ABC. Point D, E

POJ 1163 The Triangle

题目链接:http://poj.org/problem?id=1163 The Triangle Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39022   Accepted: 23430 Description 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5 (Figure 1) Figure 1 shows a number triangle. Write a program that calculat

LeetCode--Pascal&#39;s Triangle

Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, Return [ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ] class Solution { public: vector<vector<int> > generate(int numRows) { vector<vector<in

? (triangle)

2.1 题目描述 给定一个无自环重边的无向图,求这个图的三元环1的个数以及补图2的三元环个数. 2.2 输入格式 第一行 2 个数 n, m ,分别表示图的点数.边数. 接下来 m 行,每行两个数 u, v ,表示一条连接 u, v 的无向边. 2.3 输出格式 一行两个数,依次表示原图的三元环个数以及补图的三元环的个数. 2.4 样例输入 5 5 1 2 1 3 2 3 2 4 3 4 2.5样例输出 2 1 2.6数据范围 对于 30% 的数据:n ≤ 100 对于 60% 的数据:m ≤