MTD技术介绍

MTD(Memory Technology device)是用于访问memory设备(ROM、Flash)的Linux子系统,在Linux中引入这一层的主要目的是为了更加简单的添加新的Memory存储设备,它提供一层抽象的接口。

从上图可以看出,mtd原始设备层可以让底层Flash以字符设备呈现为应用层,表现形式为/dev/mtdN,也可以以块设备呈现给应用层,表现形式为/dev/mtdblockN。在应用层面上,对于字符形式的Flash设备,可以通过mtd-utils工具来控制。对于块设备形式的Flash设备,可以通过mount、umount命令来控制。

1. 硬件驱动层

硬件驱动层负责在初始化时,驱动Flash硬件,Linux MTD设备的Nor Flash芯片驱动遵循CFI接口标准规范,其驱动程序位于drivers/mtd/chips目录下。Nand Flash驱动代码位于/drivers/mtd/nand/子目录下。

2. MTD原始设备层

该层的上面为MTD原始设备的通用代码,下面为各个特定Flash的接口代码。因为这一层要封装不同Flash的操作接口,向上提供统一接口,因此,应该是有一个通用的操作接口设备描述符,里面包含了常见的所有flash设备的操作数据和操作方法。在MTD中,使用mtd_info来描述。

mtd_info,描述MTD原始设备层,定义了大量关于mtd的数据和操作函数。每一个mtd_info都代表一个抽象的MTD设备分区,这些设备保存在一个设备数组mtd_table中。对于每一个虚拟的MTD设备,它应该包含一些分区相关的信息,这些信息用mtd_part来描述。

   1:  struct mtd_part {  
   2:      struct mtd_info mtd;                //mtd_info数据结构,会被加入mtd_table中  
   3:      struct mtd_info *master;            //该分区的主分区  
   4:      uint64_t offset;                    //该分区的偏移地址  
   5:      struct list_head list;              //分区链表  
   6:  };  

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }

从内核代码的函数组织构造上来看,对于上述mtd_info和mtd_table的操作,肯定有相关函数。

add_mtd_device : 将特定mtd_info分区信息加入mtd_table中,

del_mtd_device  :  将特定mtd_info分区信息从mtd_tabe中移除。

add_mtd_partitions:将特定mtd_info的特定分区信息加入mtd_table中,函数原型如下:

/*
 * This function, given a master MTD object and a partition table, creates
 * and registers slave MTD objects which are bound to the master according to
 * the partition definitions.
 * (Q: should we register the master MTD object as well?)
 */

int add_mtd_partitions(struct mtd_info *master,                           //MTD原始设备
                       const struct mtd_partition *parts,                    //Nand 分区信息
                       int nbparts)                                          //有几个分区

.csharpcode, .csharpcode pre
{
font-size: small;
color: black;
font-family: consolas, "Courier New", courier, monospace;
background-color: #ffffff;
/*white-space: pre;*/
}
.csharpcode pre { margin: 0em; }
.csharpcode .rem { color: #008000; }
.csharpcode .kwrd { color: #0000ff; }
.csharpcode .str { color: #006080; }
.csharpcode .op { color: #0000c0; }
.csharpcode .preproc { color: #cc6633; }
.csharpcode .asp { background-color: #ffff00; }
.csharpcode .html { color: #800000; }
.csharpcode .attr { color: #ff0000; }
.csharpcode .alt
{
background-color: #f4f4f4;
width: 100%;
margin: 0em;
}
.csharpcode .lnum { color: #606060; }

其中的parts和nbparts是由static struct mtd_partition XXXXXXXX[ ] 来决定,可以在kernel中硬编码,也可以通过bootloader传递给kernel来决定。一般只要给出每个分区的name,offset和size就足够了。

一个MTD原始设备可以通过mtd_part分割成数个MTD原 始设备注册进mtd_table,

mtd_table中的每个MTD原始设备都可以被注册成一个MTD设备,

有两个函数可以完成这个工作,即 add_mtd_device函数和add_mtd_partitions函数。

其中add_mtd_device函数是把整个NAND FLASH注册进MTD Core,

而add_mtd_partitions函数则是把NAND FLASH的各个分区分别注册进MTD Core。

3. MTD设备层

基于MTD原始设备层,Linux系统定义出MTD的块设备(主设备号为31)和字符设备(主设备号为90)。其中,块设备通过一个描述mtd块设备的结构体mtdblk_dev,结合对于的mtdblks的指针数组,形成于mtd_table中的mtd_info的一一对应关系。

字符设备和普通字符设备一样,通过注册一系列file_operation函数(lseek,open,close,write,read)。

4. 设备节点

在系统初始化时,通过udev或者mdev自动发现挂载设备,在dev目录下创建mtd字符设备节点(/dev/)和块设备节点

5. 根文件系统和文件系统

内核启动之后,通过mount命令将flash中其他分区作为文件系统挂载上。

从类型上来看,mtd核心部分初始化可以分为两个部分,字符设备的mtd层初始化和块设备的mtd层初始化。

MTD读写操作

MTD对NAND芯片的读写主要分三部分:

A、struct mtd_info中的读写函数,如read,write_oob等,这是MTD原始设备层与FLASH硬件层之间的接口;

B、struct nand_ecc_ctrl中的读写函数,如read_page_raw,write_page等,主要用来做一些与ecc有关的操作;

C、struct nand_chip中的读写函数,如read_buf,cmdfunc等,与具体的NAND controller相关,就是这部分函数与硬件交互,通常需要我们自己来实现。(注:这里提到的read,write_oob,cmdfunc等,其实 都是些函数指针,所以这里所说的函数,是指这些函数指针所指向的函数,以后本文将不再另做说明。)

值得一提的是,struct nand_chip中的读写函数虽然与具体的NAND controller相关,但是MTD也为我们提供了default的读写函数,如果你的NAND controller比较通用(使用PIO模式),对NAND芯片的读写与MTD提供的这些函数一致,就不必自己实现这些函数了。

这三部分读写函数是相互配合着完成对NAND芯片的读写的。首 先,MTD上层需要读写NAND芯片时,会调用struct mtd_info中的读写函数,接着struct mtd_info中的读写函数就会调用struct nand_chip或struct nand_ecc_ctrl中的读写函数,最后,若调用的是struct nand_ecc_ctrl中的读写函数,那么它又会接着调用struct nand_chip中的读写函数。

以读NAND芯片为例,讲解一下这三部分读写函数的工作过程。

首先,MTD上层会调用struct mtd_info中的读page函数,即nand_read函数。

接着nand_read函数会调用struct nand_chip中cmdfunc函数,这个cmdfunc函数与具体的NAND controller相关,它的作用是使NAND controller向NAND 芯片发出读命令,NAND芯片收到命令后,就会做好准备等待NAND controller下一步的读取。

接着nand_read函数又会调用struct nand_ecc_ctrl中的read_page函数,而read_page函数又会调用struct nand_chip中read_buf函数,从而真正把NAND芯片中的数据读取到buffer中(所以这个read_buf的意思其实应该是read into buffer,另外,这个buffer是struct mtd_info中的nand_read函数传下来的)。

read_buf函数返回后,read_page函数就会对buffer中的数据做一些处理,比如校验ecc,以及若数据有错,就根据ecc对数据修正之类的,最后read_page函数返回到nand_read函数中。

对NAND芯片的其它操作,如写,擦除等,都与读操作类似。

参考链接:

http://blog.csdn.net/leibniz_zsu/article/details/4977650

http://blog.csdn.net/leibniz_zsu/article/details/4977842

http://blog.csdn.net/leibniz_zsu/article/details/4977842

时间: 2024-10-10 12:01:16

MTD技术介绍的相关文章

Qinq技术介绍与实战

说明:本文介绍部分是我在网络收集整理并添加提供. Qinq技术介绍与实战 Qinq介绍 Qinq就是为用户提供一种较为简单的二层VPN隧道.最核心的思想就是将用户私网VLAN tag封装到公网VLANtag上,报文带着两层tag穿越服务商的骨干网络.在用户端口上使QinQ功能时,都会为每个用户分配一个Customer-ID.其中报文中的两层tag标签包括内层ce-vid--VLAN标签和外层pe-vid-Qint标签. 那么问题来了,为什么要带两层标签呢? 我们知道,普通VLAN中的一个VLAN

《Getting Started with WebRTC》第二章 WebRTC技术介绍

本章作WebRTC的技术介绍,主要讲以下的概念: .  如何建立P2P的通信 .  有效的信令选项 .  关键API的关系 2.1 设置通信 尽管WebRTC通信的基础是P2P的, 但设置这个通信的初始步骤是要求一些协作的. 这些动作通常由Web服务器和/或信令服务器提供. 这个协作可以允许两个或多个WebRTC设备或端找到彼此,交换通信的细节, 协商定义了他们如何通信的会话, 最后建立它们之间的直播P2P媒体流. 2.2 一般流程 应用场景其实是很多的,从简单的页面DEMO到多方会议. 这里只

Windows Workflow Foundation技术介绍(基于.NET Framework 4.5)

Windows Workflow Foundation技术介绍(基于.NET Framework 4.5) 转自:http://www.cpiso.cn/jsyj/ghxx/2014/5/15/459.shtml Microsoft Windows Workflow Foundation (WF) 是一个可扩展框架,用于在 Windows 平台上开发工作流解决方案.Windows Workflow Foundation 同时提供了 API 和一些工具,用于开发和执行基于工作流的应用程序.Wind

微信游戏《全民炫舞》公司的引擎开发和布料系统技术介绍

微信<全民炫舞>上线了. 整理了一下过去技术开发历史,还有技术ppt,有兴趣看下: 公司游戏引擎技术介绍: http://www.h3d.com.cn/hr/hr.htm 布料系统技术介绍: 2012 China Game Developer Conference大会演讲资料下载: http://www.h3d.com.cn/hr/downlond/QQX52_CGDC.ppt NVIDIA QQ炫舞2 布料技术演示录像地址: http://www.h3d.com.cn/hr/donnlond

TIBCO Rendezvous — 技术介绍

TIBCO Rendezvous — 技术介绍 1.1.1.      TIBCO Rendezvous — 技术介绍 TIBCO Rendezvous(或称为TIBCO RV)产品是一种中间件,它具有发布/订阅(Publish/Subscribe).基于主题寻址(Subject-Based Addressing) 和自定义数据信息(Self-Describing Data Messages)等专利技术功能,使不同应用平台上的信息在一个共享的虚拟总线Information Bus(TIB)上进行

网络视频相关技术介绍

AnyChat音视频互动开发平台(SDK)是一套跨平台的即时通讯解决方案,基于先进的H.264视频编码标准.AAC音频编码标准与P2P技术,支持高清视频,整合了佰锐科技在音视频编码.多媒体通讯领域领先的开发技术和丰富的产品经验而设计的高质量.宽适应性.分布式.模块化的网络音视频互动平台.        AnyChat音视频互动开发平台(SDK)包含了音视频处理模块(采集.编解码).流媒体管理模块(丢包重传.抖动平滑.动态缓冲).流媒体播放模块(多路混音.音视频同步)以及P2P网络模块(NAT穿透

RAID技术介绍

RAID技术介绍 简介 RAID是一个我们经常能见到的名词.但却因为很少能在实际环境中体验,所以很难对其原理 能有很清楚的认识和掌握.本文将对RAID技术进行介绍和总结,以期能尽量阐明其概念. RAID全称为独立磁盘冗余阵列(Redundant Array of Independent Disks),基本思想就是把多个相对便宜的硬盘组合起来,成为一个硬盘阵列组,使性能达到甚至超过一个价格昂贵. 容量巨大的硬盘.RAID通常被用在服务器电脑上,使用完全相同的硬盘组成一个逻辑扇区,因此操作系统只会把

DHTML(动态HTML)前台页面技术介绍

一. DHTML(动态HTML)前台页面技术介绍 1. DHTML介绍 DHTML包含以四个方面的内容: (1).HTML 4.0 :超文本标记语言,网页文档的主体,以文本文件形式存储,由浏览器翻译后展现出丰富多彩的页面. (2).CSSL:客户端脚本语言,主要有JavaScript(JS),VBScript(VBS),JScript.Netscape主要支持JS,IE主要支持JS,VBS和JScript. (3).DOM:文档对象模型,是W3C推广的web技术标准之一,它将网页中的内容抽象成对

差分时钟、DQS与DQM - DDRx的关键技术介绍(上)

作者:一博科技 在上一篇的问题里面问到了DDRX相对于前一代来说的关键技术突破在哪里,虽然没有人回答得完全正确,但这个也是很正常的,因为通过几句话要想说清楚也确实是不容易的,所以还是通过文章来把这些关键技术再给大家介绍一下. 差分时钟技术 差分时钟是DDR的一个重要且必要的设计,但大家对CK#(CKN)的作用认识很少,很多人理解为第二个触发时钟,其实它的真实作用是起到触发时钟校准的作用. 由于数据是在CK的上下沿触发,造成传输周期缩短了一半,因此必须要保证传输周期的稳定以确保数据的正确传输,这就