看周志华教授的一番话有感

【看周志华教授的一番话有感】

有点幽默,但很朴实,深度学习现在差不多就是民工活,调来调去,刷来刷去。文章发得飞快,貌似热闹,但有多少是能积淀下来的实质真进展,又有多少是换个数据就不靠谱了的蒙事撞大运?既缺乏清澈干净的内在美感,又不致力于去伪存真、正本清源,只图热闹好看,迟早把 arXiv 变成废纸堆。

周志华教授的这段话在一定程度上说的就是我,

总是把别人的代码拿下来跑,

好像跑通了就会很有成就感

其实这种想法很危险,

在当前深度学习的浪潮里,非常需要能静下心研究出真正的东西而不只是调调参数改改模型

做一些实际的东西,有用的,前瞻的。

这需要踏踏实实的把论文读明白,调研清楚领域的发展状况,

都有哪几种方法

要时刻分清楚什么是“耗时耗力,但毫无创新的”

要避免这类工作,而要做出有用的工作,

做出自己的工作。

有些事情看起来很有成就感,但是并不难

比如搭建一个网站,

只是步骤繁琐罢了

教程都是现有的,根本不费脑力

这次买来了树莓派,

也不能只是在上面运行别人的idea,

要有自己的想法,

或者至少让自己学习到了什么,

真正的在这件事中有所成长

否则就只是在别人的工作中沾沾自喜罢了

时间: 2024-10-06 21:27:25

看周志华教授的一番话有感的相关文章

周志华:关于机器学习的一点思考

https://mp.weixin.qq.com/s/sEZM_o5D6AhyMgvocbsFhw 演讲:周志华 整理:肖琴.闻菲 [新智元导读]机器学习如今大获成功的原因有哪些?如何才能取得进一步的突破?南京大学周志华教授在AI WORLD 2018大会上分享他关于机器学习的一点思考:我们需要设计新的.神经网络以外的深度模型:让智能体在弱监督条件下也能够学习,以及考虑开放动态任务环境下的学习. 播放 震撼!AI WORLD 2018世界人工智能峰会开场视频 南京大学计算机系主任.人工智能学院院

【读书笔记】机器学习-周志华 & 机器学习实战(Python)

这两本放在一起看吧.当然了,我觉得Spark上面的实践其实是非常棒的.有另一个系列文章讨论了Spark. /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈哈. P1 一般用模型指全局性结果(例如决策树),用模式指局部性结果(例如一条规则). P3 如果预测的是离散值,那就是分类-classification:如果预测的是连续值,那就叫回归-regression. P3

张志华教授:机器学习——统计与计算之恋

张志华教授:机器学习——统计与计算之恋 编辑部按:本文是从张志华老师在第九届中国R语言会议和上海交通大学的两次讲座中整理出来的.张志华老师是上海交通大学计算机科学与工程系教授,上海交通大学数据科学研究中心兼职教授,计算机科学与技术和统计学双学科的博士生指导导师.在加入上海交通大学之前,是浙江大学计算机学院教授和浙江大学统计科学中心兼职教授.张老师主要从事人工智能.机器学习与应用统计学领域的教学与研究,迄今在国际重要学术期刊和重要的计算机学科会议上发表70余篇论文,是美国“数学评论”的特邀评论员,

机器学习-周志华

机器学习的一些小tips周志华Tom M.Mitchell,是卡内基梅隆大学的教授,讲授“机器学习”等多门课程:美国人工智能协会(AAAL)的主席:美国<Machine Learning>杂志.国际机器学习年度会议(ICML)的创始人:多种技术杂志的撰稿人,曾发表过许多文章,出版过多本专著,是机器学习领域的著名学者. 本书展示了机器学习中核心的算法和理论,并阐明了算法的运行过程.本书综合了许多的研究成果,例如统计学.人工智能.哲学.信息论.生物学.认知科学.计算复杂性和控制论等,并以此来理解问

机器学习是什么--周志华

机器学习是什么--周志华 机器学习现在是一大热门,研究的人特多,越来越多的新人涌进来. 不少人其实并没有真正想过,这是不是自己喜欢搞的东西,只不过看见别人都在搞,觉着跟大伙儿走总不会吃亏吧. 问题是,真有个“大伙儿”吗?就不会是“两伙儿”.“三伙儿”?如果有“几伙儿”,那到底该跟着“哪伙儿”走呢? 很多人可能没有意识到,所谓的machine learning community,现在至少包含了两个有着完全不同的文化.完全不同的价值观的群体,称为machine learning "communit

《机器学习》(周志华)第4章 决策树 笔记 理论及实现——“西瓜树”

参考书籍:<机器学习>(周志华) 说       明:本篇内容为读书笔记,主要参考教材为<机器学习>(周志华).详细内容请参阅书籍——第4章 决策树.部分内容参考网络资源,在此感谢所有原创者的工作. ================================================================= 第一部分 理论基础 1. 纯度(purity) 对于一个分支结点,如果该结点所包含的样本都属于同一类,那么它的纯度为1,而我们总是希望纯度越高越好,也就是

(转)周志华:“深”为什么重要,以及还有什么深的网络

周志华老师大家应该都很熟悉吧,今天偶然看到他在今年IJCAI大会上的发言稿,感觉读完受益匪浅,故摘录下来与大家分享,也方便日后复习查看. 本文由雷锋网整理完成,原文地址:https://ai.yanxishe.com/page/reportDetail/14317 这里只是用于学习用途,非商业用途,如有侵权,请联系博主删除. 深度学习就等于深度神经网络吗? 深度学习今天已经有各种各样的应用,到处都是它,不管图像也好,视频也好,声音自然语言处理等等.那么我们问一个问题,什么是深度学习? 我想大多数

偶尔转帖:AI会议的总结(by南大周志华)

偶尔转帖:AI会议的总结(by南大周志华) 说明: 纯属个人看法, 仅供参考. tier-1的列得较全, tier-2的不太全, tier-3的很不全. 同分的按字母序排列. 不很严谨地说, tier-1是可以令人羡慕的, tier-2是可以令 人尊敬的,由于AI的相关会议非常多, 所以能列进tier-3的也是不错的 tier-1: IJCAI (1+): International Joint Conference on Artificial Intelligence AAAI (1): Na

(二)《机器学习》(周志华)第4章 决策树 笔记 理论及实现——“西瓜树”——CART决策树

CART决策树 (一)<机器学习>(周志华)第4章 决策树 笔记 理论及实现--"西瓜树" 参照上一篇ID3算法实现的决策树(点击上面链接直达),进一步实现CART决策树. 其实只需要改动很小的一部分就可以了,把原先计算信息熵和信息增益的部分换做计算基尼指数,选择最优属性的时候,选择最小的基尼指数即可. #导入模块 import pandas as pd import numpy as np from collections import Counter #数据获取与处理