24点经典算法

1、概述

  给定4个整数,当中每一个数字仅仅能使用一次;随意使用 + - * / ( ) ,构造出一个表达式,使得终于结果为24,这就是常见的算24点的游戏。这方面的程序非常多,一般都是穷举求解。本文介绍一种典型的算24点的程序算法,并给出两个详细的算24点的程序:一个是面向过程的C实现,一个是面向对象的java实现。

  2、基本原理

  基本原理是穷举4个整数全部可能的表达式,然后对表达式求值。

  表达式的定义: expression = (expression|number) operator (expression|number)

  由于能使用的4种运算符 + - * / 都是2元运算符,所以本文中仅仅考虑2元运算符。2元运算符接收两个參数,输出计算结果,输出的结果參与兴许的计算。

  由上所述,构造全部可能的表达式的算法例如以下:

  (1) 将4个整数放入数组中

  (2) 在数组中取两个数字的排列,共同拥有 P(4,2) 种排列。对每个排列,

  (2.1) 对 + - * / 每个运算符,

  (2.1.1) 依据此排列的两个数字和运算符,计算结果

  (2.1.2) 改表数组:将此排列的两个数字从数组中去除掉,将 2.1.1 计算的结果放入数组中

  (2.1.3) 对新的数组,反复步骤 2

  (2.1.4) 恢复数组:将此排列的两个数字增加数组中,将 2.1.1 计算的结果从数组中去除掉

  可见这是一个递归过程。步骤 2 就是递归函数。当数组中仅仅剩下一个数字的时候,这就是表达式的终于结果,此时递归结束。

  在程序中,一定要注意递归的现场保护和恢复,也就是递归调用之前与之后,现场状态应该保持一致。在上述算法中,递归现场就是指数组,2.1.2 改变数组以进行下一层递归调用,2.1.3 则恢复数组,以确保当前递归调用获得下一个正确的排列。

  括号 () 的作用仅仅是改变运算符的优先级,也就是运算符的计算顺序。所以在以上算法中,无需考虑括号。括号仅仅是在输出时需加以考虑。

  3、面向过程的C实现

  这是 csdn 算法论坛前版主海星的代码,程序很简练、精致:

#include  
#include  
#include  
using namespace std; 
const double PRECISION = 1E-6; 
const int COUNT_OF_NUMBER  = 4; 
const int NUMBER_TO_BE_CAL = 24; 
double number[COUNT_OF_NUMBER]; 
string expression[COUNT_OF_NUMBER]; 
bool Search(int n) 
{ 
    if (n == 1) { 
        if ( fabs(number[0] - NUMBER_TO_BE_CAL) < PRECISION ) { 
            cout << expression[0] << endl; 
            return true; 
        } else { 
            return false; 
        } 
    } 
    for (int i = 0; i < n; i++) { 
        for (int j = i + 1; j < n; j++) { 
            double a, b; 
            string expa, expb; 
            a = number[i]; 
            b = number[j]; 
            number[j] = number[n - 1]; 
            expa = expression[i]; 
            expb = expression[j]; 
            expression[j] = expression[n - 1]; 
            expression[i] = ‘(‘ + expa + ‘+‘ + expb + ‘)‘; 
            number[i] = a + b; 
            if ( Search(n - 1) ) return true; 
            
            expression[i] = ‘(‘ + expa + ‘-‘ + expb + ‘)‘; 
            number[i] = a - b; 
            if ( Search(n - 1) ) return true; 
            
            expression[i] = ‘(‘ + expb + ‘-‘ + expa + ‘)‘; 
            number[i] = b - a; 
            if ( Search(n - 1) ) return true; 
                        
            expression[i] = ‘(‘ + expa + ‘*‘ + expb + ‘)‘; 
            number[i] = a * b; 
            if ( Search(n - 1) ) return true; 
            if (b != 0) { 
                expression[i] = ‘(‘ + expa + ‘/‘ + expb + ‘)‘; 
                number[i] = a / b; 
                if ( Search(n - 1) ) return true; 
            }  
            if (a != 0) { 
                expression[i] = ‘(‘ + expb + ‘/‘ + expa + ‘)‘; 
                number[i] = b / a; 
                if ( Search(n - 1) ) return true; 
            } 
            number[i] = a; 
            number[j] = b; 
            expression[i] = expa; 
            expression[j] = expb; 
        } 
    } 
    return false; 
} 
void main() 
{ 
    for (int i = 0; i < COUNT_OF_NUMBER; i++) { 
        char buffer[20]; 
        int  x; 
        cin >> x; 
        number[i] = x; 
        itoa(x, buffer, 10); 
        expression[i] = buffer; 
    } 
    if ( Search(COUNT_OF_NUMBER) ) { 
        cout << "Success." << endl; 
    } else { 
        cout << "Fail." << endl; 
    }         
} 

  使用任一个 c++ 编译器编译就可以。

  这个程序的算法与 2、基本原理所述的算法基本同样。当中 bool Search(int n) 就是递归函数,double number[] 就是数组。程序中比較重要的地方解释例如以下:

  (1) string expression[] 存放每一步产生的表达式,最后的输出中要用到。expression[] 与 number[] 相似,也是递归调用的现场,必须在下一层递归调用前改变、在下一层递归调用后恢复。

  (2) number[] 数组长度仅仅有4。在 search() 中,每次取出两个数后,使用局部变量 a, b 保存这两个数,同一时候数组中增加运算结果,并调整数组使得有效的数字都排列在数组前面。在下一层递归调用后,利用局部变量 a, b 恢复整个数组。对 expression[] 的处理与 number[] 相似。

  (3) 由于 + * 满足交换率而 - / 不满足,所以程序中,从数组生成两个数的排列,

  for (int i = 0; i < n; i++) {

  for (int j = i + 1; j < n; j++) {

  其内层循环 j 是从 i+1 -> n,而非从 0->n ,由于对于交换率来说,两个数字的顺序是无所谓的。当然,循环内部对 - / 做了特殊处理,计算了 a-b b-a a/b b/a 四种情况。

  (4) 此程序仅仅求出第一个解。当求出第一个解时,通过层层 return true 返回并输出结果,然后程序结束。

  (5) 以 double 来进行求解,定义精度,用以推断是否为 24 。考虑 (5-1/5)*5 这个表达式就知道这么做的原因了。

  (6) 输出时,为每一个表达式都加入了括号。

24点经典算法,布布扣,bubuko.com

时间: 2024-10-20 07:35:50

24点经典算法的相关文章

经典算法mark

在平时找工作的时候,或多或少会遇到一些算法问题,很多都是比较经典或者网上已经流传很久的.只是我们没有接触过,所以不知道怎么解决. 在这儿,我自己总结一些我遇到的一些经典算法,给自己增加一点记忆,也给需要的朋友看到学习一下. 1. 倒水问题 如题:一个容量为5升的杯子和一个容量为3升的杯子,水不限使用,要求精确得到4升水. 这类题一般会有两种出题方式: A.简答 这儿先给出简答的答案:其实结果又很多种,这儿给出倒水次数最少的一种. B.编程实现 解法也比较多,我首先想到的DFS(深度优先)搜索,每

数据挖掘经典算法——先验算法

算法描述 先验算法是实现频繁项挖掘的一种经典算法,利用关联式规则不断扩展频繁项子集以获得全部的频繁项集合.解释一下关联式规则,所谓关联式是指在大量的数据中找出的项与项之间的关系.例如消费者购买了产品A,一般都会购买产品B,这就是一条关联式. 先验算法被设计用来处理包含事务的数据库,这里的每一个事务都被当成是一组项集,给定一个阈值C,我们需要找出至少出现C次的事务子集(即子项).这边这个C值就是最小支持度,规定了一个项集出现多少次才能被认为是一个频繁项. 先验算法的核心思想基于以下一个事实:一个项

经典算法宝典——贪婪思想(五)(1)

贪婪法(Greedy)又叫登山法,它的根本思想是逐步到达山顶,即逐步获得最优解,是解决最优化问题时的一种简单但适用范围有限的策略."贪婪"可以理解为以逐步的局部最优,达到最终的全局最优. 贪婪算法没有固定的算法框架,算法设计的关键是贪婪策略的选择.一定要注意,选择的贪婪策略要具有无后向性,即某阶段状态一旦确定以后,不受这个状态以后的决策影响.也就是说某状态以后的过程不会影响以前的状态,只与当前状态有关,也称这种特性为无后效性.因此,适应用贪婪策略解决的问题类型较少,对所采用的贪婪策略一

【经典算法大全】收集51种经典算法 初学者必备

<经典算法大全>是一款IOS平台的应用.里面收录了51种常用算法,都是一些基础问题.博主觊觎了好久,可悲哀的是博主没有苹果,所以从网上下了老奔的整理版并且每个都手敲了一遍. 虽然网上也有博客贴了出来,但是自己写写感觉总是好的.现在分享个大家. 代码和运行结果难免有出错的地方,请大家多多包涵. 1.河内之塔(汉诺塔) 2.费式数列 3.巴斯卡三角形 4.三色棋 5.老鼠走迷宫(1) 6.老鼠走迷宫(2) 7.骑士走棋盘 8.八皇后 9.八枚银币 10.生命游戏 11.字串核对 12.双色河内塔,

经典算法之判断一个整数是否为素数

经典算法之判断一个整数是否为素数 1 /** 2 判断一个数是否为素数 如: 3 输入: 任意一个数 12 4 输出: 1或0(1表示为素数) 0 5 */ 6 /**************被称为笨蛋的做法************/ 7 #include <stdio.h> 8 9 int main() 10 { 11 12 int i,n; //i为计数数,n为存储用户输入的数 13 14 do //循环检测用户输入的数据>0为合法 15 scanf("%d",&

经典算法大全

原文地址:经典算法大全 作者:liurhyme 经                                                                    典                                                                    算                                                                    法                  

Java经典算法案例

笔试中的编程题3 JAVA经典算法40例[程序1] 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程序分析: 兔子的规律为数列1,1,2,3,5,8,13,21.... public class exp2{public static void main(String args[]){int i=0;for(i=1;i<=20;i++)System.out.println(f(i));}pu

javascript常用经典算法实例详解

javascript常用经典算法实例详解 这篇文章主要介绍了javascript常用算法,结合实例形式较为详细的分析总结了JavaScript中常见的各种排序算法以及堆.栈.链表等数据结构的相关实现与使用技巧,需要的朋友可以参考下 本文实例讲述了javascript常用算法.分享给大家供大家参考,具体如下: 入门级算法-线性查找-时间复杂度O(n)--相当于算法界中的HelloWorld ? 1 2 3 4 5 6 7 8 9 10 //线性搜索(入门HelloWorld) //A为数组,x为要

经典算法题每日演练——第十六题 Kruskal算法

原文:经典算法题每日演练--第十六题 Kruskal算法 这篇我们看看第二种生成树的Kruskal算法,这个算法的魅力在于我们可以打一下算法和数据结构的组合拳,很有意思的. 一:思想 若存在M={0,1,2,3,4,5}这样6个节点,我们知道Prim算法构建生成树是从”顶点”这个角度来思考的,然后采用“贪心思想” 来一步步扩大化,最后形成整体最优解,而Kruskal算法有点意思,它是站在”边“这个角度在思考的,首先我有两个集合. 1. 顶点集合(vertexs): 比如M集合中的每个元素都可以认