boosting和bagging

首先来说明一下bootstraps:可以把它认为是一种有放回的抽样方法。

bagging:boostraps aggregating(汇总)

boosting:Adaboot (Adaptive Boosting)提示方法

提升(boosting):在分类问题中,通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能。

思想:提示方法就是从弱学习算法出发,反复学习,得到一系列弱分类器(基分类器),然后组合这些弱分类器,构成一个强分类器

1)改变训练数据的概率分布 2)改变数据权值分布。

AdaBoost:1)提高那些未被正确分类的样本权值,降低那些被分类正确的样本权值。这样分类错误的样本就被后来的分类器更大的关注。

2)采用加权多数表决,加大准确率高的分类器权值。

算法步骤:

(1)初始化权值

(2)使用具有权值分布的Dm的训练数据学习,得到基本分类器  Gm(x).

(3) 计算Gm(x)在训练数据集上的分类误差率

(4)计算Gm(x)的系数

(5)更新权值分布(如果分类错误要提高权值,分类正确要降低权值(公式我就不打出来了))

不改变所给的训练数据,而是不断的改变数据的权值分布,使得训练数据在基本分类器的学习中起到不同的作用

(6)循环直到多个分类器都训练完。

(7)构建基本分类器

以后等我学了python,我在自己实现一遍。这是串行的,与之前的分类器的学习训练结果有关。,根据错误率采样。

bagging:

通过使用bootstrap随机选取训练数据集,分类器的训练建模师相互独立的,可以采取并行的方式。

bagging的基础是重复取样,通过产生样本的重复Bootstrap实例作为训练集,每回都是从总的样本随机选取和样本一样大小的数据(不一定一样规模),是有放回的,所以可能有的样本数据会重复出现。但其实就是利用这一点。这样通过增加训练数据的差异性生成有差异性的分类器,提高集成泛化能力。

对于这个的理论分析我就不说了,我他妈看不懂。。

boosting和bagging,布布扣,bubuko.com

时间: 2024-12-13 13:59:58

boosting和bagging的相关文章

ML中Boosting和Bagging的比较

说到ML中Boosting和Bagging,他们属于的是ML中的集成学习,集成学习法(Ensemble Learning) ①  将多个分类方法聚集在一起,以提高分类的准确率. (这些算法可以是不同的算法,也可以是相同的算法.) ②  集成学习法由训练数据构建一组基分类器,然后通过对每个基分类器的预测进行投票来进行分类 ③  严格来说,集成学习并不算是一种分类器,而是一种分类器结合的方法. ④  通常一个集成分类器的分类性能会好于单个分类器 ⑤  如果把单个分类器比作一个决策者的话,集成学习的方

boosting与bagging理解

作为集成学习的二个方法,其实bagging和boosting的实现比较容易理解,但是理论证明比较费力.下面首先介绍这两种方法. 所谓的集成学习,就是用多重或多个弱分类器结合为一个强分类器,从而达到提升分类方法效果.严格来说,集成学习并不算是一种分类器,而是一种分类器结合的方法. 1.bagging bagging算是很基础的集成学习的方法,他的提出是为了增强分类器效果,但是在处理不平衡问题上却有很好的效果. 如上图,原始数据集通过T次随机采样,得到T个与原始数据集相同大小的子数据集,分别训练得到

Boosting和Bagging的差别

boosting和bagging的差别: bagging中的模型是强模型,偏差低,方差高.目标是降低方差.在bagging中,每个模型的bias和variance近似相同,但是互相相关性不太高,因此一般不能降低Bias,而一定程度上能降低variance.典型的bagging是random forest. boosting中每个模型是弱模型,偏差高,方差低.目标是通过平均降低偏差.boosting的基本思想就是用贪心法最小化损失函数,显然能降低偏差,但是通常模型的相关性很强,因此不能显著降低va

[笔记]Boosting和Bagging

集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务.集成学习通过将多个学习器进行结合,常可以获得比单一学习器显著优越的泛化性能.这对"弱学习器"尤为明显,因此集成学习的很多理论研究都是针对弱学习器进行的. 要获得好的集成,个体学习器应该"好而不同",即个体学习器要有一定的"准确性",即学习器不能太坏,并且要有"多样性",即学习器之间有差异. 根据个体学习器的生成方式,目前的集成学习方法大致可以

集成学习算法总结----Boosting和Bagging(转)

1.集成学习概述 1.1 集成学习概述 集成学习在机器学习算法中具有较高的准去率,不足之处就是模型的训练过程可能比较复杂,效率不是很高.目前接触较多的集成学习主要有2种:基于Boosting的和基于Bagging,前者的代表算法有Adaboost.GBDT.XGBOOST.后者的代表算法主要是随机森林. 1.2 集成学习的主要思想 集成学习的主要思想是利用一定的手段学习出多个分类器,而且这多个分类器要求是弱分类器,然后将多个分类器进行组合公共预测.核心思想就是如何训练处多个弱分类器以及如何将这些

集成学习算法总结----Boosting和Bagging

1.集成学习概述 1.1 集成学习概述 集成学习在机器学习算法中具有较高的准去率,不足之处就是模型的训练过程可能比较复杂,效率不是很高.目前接触较多的集成学习主要有2种:基于Boosting的和基于Bagging,前者的代表算法有Adaboost.GBDT.XGBOOST.后者的代表算法主要是随机森林. 1.2 集成学习的主要思想 集成学习的主要思想是利用一定的手段学习出多个分类器,而且这多个分类器要求是弱分类器,然后将多个分类器进行组合公共预测.核心思想就是如何训练处多个弱分类器以及如何将这些

集成学习记录(Boosting和Bagging)

集成学习: 集成学习在机器学习算法中具有较高的准去率,不足之处就是模型的训练过程可能比较复杂,效率不是很高. 目前接触较多的集成学习主要有2种:基于Boosting的和基于Bagging,前者的代表算法有Adaboost.GBDT.XGBOOST.后者的代表算法主要是随机森林. 集成学习主要思想: 集成学习的主要思想是利用一定的手段学习出多个分类器,而且这多个分类器要求是弱分类器,然后将多个分类器进行组合公共预测.核心思想就是如何训练处多个弱分类器以及如何将这些弱分类器进行组合. 弱分类器选择:

[Algorithm] 集成学习方法——Bagging和 Boosting

使用机器学习方法解决问题时,有较多模型可供选择. 一般的思路是先根据数据的特点,快速尝试某种模型,选定某种模型后, 再进行模型参数的选择(当然时间允许的话,可以对模型和参数进行双向选择) 因为不同的模型具有不同的特点, 所以有时也会将多个模型进行组合,以发挥"三个臭皮匠顶一个诸葛亮的作用", 这样的思路, 反应在模型中,主要有两种思路:Bagging和Boosting 1. Bagging Bagging 可以看成是一种圆桌会议, 或是投票选举的形式,其中的思想是:"群众的眼

【机器学习】Bagging与Boosting算法原理小结

集成学习(Ensemble Larning)本身不是一个单独的机器学习算法,是通过构建并结合多个机器学习器来完成学习任务的思想.通常的集成学习的方法指的是同质个体学习器.同质个体学习器使用最多的模型是CART决策树和神经网络.按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,一系列个体学习器基本都需要串行生成,代表算法是Boosting系列算法:第二个是个体学习器之间不存在强依赖关系,一系列个体学习器可以并行生成,代表算法是Bagging和随机森林(Rando