整理了一下大白书上的计算几何模板。
1 #include <cstdio> 2 #include <algorithm> 3 #include <cmath> 4 using namespace std; 5 //lrj计算几何模板 6 struct Point 7 { 8 double x, y; 9 Point(double x=0, double y=0) :x(x),y(y) {} 10 }; 11 typedef Point Vector; 12 const double EPS = 1e-10; 13 14 //向量+向量=向量 点+向量=点 15 Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } 16 17 //向量-向量=向量 点-点=向量 18 Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } 19 20 //向量*数=向量 21 Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } 22 23 //向量/数=向量 24 Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } 25 26 bool operator < (const Point& a, const Point& b) 27 { return a.x < b.x || (a.x == b.x && a.y < b.y); } 28 29 int dcmp(double x) 30 { if(fabs(x) < EPS) return 0; else x < 0 ? -1 : 1; } 31 32 bool operator == (const Point& a, const Point& b) 33 { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } 34 35 /**********************基本运算**********************/ 36 37 //点积 38 double Dot(Vector A, Vector B) 39 { return A.x*B.x + A.y*B.y; } 40 //向量的模 41 double Length(Vector A) { return sqrt(Dot(A, A)); } 42 43 //向量的夹角,返回值为弧度 44 double Angle(Vector A, Vector B) 45 { return acos(Dot(A, B) / Length(A) / Length(B)); } 46 47 //叉积 48 double Cross(Vector A, Vector B) 49 { return A.x*B.y - A.y*B.x; } 50 51 //向量AB叉乘AC的有向面积 52 double Area2(Point A, Point B, Point C) 53 { return Cross(B-A, C-A); } 54 55 //向量A旋转rad弧度 56 Vector VRotate(Vector A, double rad) 57 { 58 return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)); 59 } 60 61 //将B点绕A点旋转rad弧度 62 Point PRotate(Point A, Point B, double rad) 63 { 64 return A + VRotate(B-A, rad); 65 } 66 67 //求向量A向左旋转90°的单位法向量,调用前确保A不是零向量 68 Vector Normal(Vector A) 69 { 70 double l = Length(A); 71 return Vector(-A.y/l, A.x/l); 72 } 73 74 /**********************点和直线**********************/ 75 76 //求直线P + tv 和 Q + tw的交点,调用前要确保两条直线有唯一交点 77 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) 78 { 79 Vector u = P - Q; 80 double t = Cross(w, u) / Cross(v, w); 81 return P + v*t; 82 }//在精度要求极高的情况下,可以自定义分数类 83 84 //P点到直线AB的距离 85 double DistanceToLine(Point P, Point A, Point B) 86 { 87 Vector v1 = B - A, v2 = P - A; 88 return fabs(Cross(v1, v2)) / Length(v1); //不加绝对值是有向距离 89 } 90 91 //点到线段的距离 92 double DistanceToSegment(Point P, Point A, Point B) 93 { 94 if(A == B) return Length(P - A); 95 Vector v1 = B - A, v2 = P - A, v3 = P - B; 96 if(dcmp(Dot(v1, v2)) < 0) return Length(v2); 97 else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); 98 else return fabs(Cross(v1, v2)) / Length(v1); 99 } 100 101 //点在直线上的射影 102 Point GetLineProjection(Point P, Point A, Point B) 103 { 104 Vector v = B - A; 105 return A + v * (Dot(v, P - A) / Dot(v, v)); 106 } 107 108 //线段“规范”相交判定 109 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) 110 { 111 double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1); 112 double c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1); 113 return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; 114 } 115 116 //判断点是否在线段上 117 bool OnSegment(Point P, Point a1, Point a2) 118 { 119 Vector v1 = a1 - P, v2 = a2 - P; 120 return dcmp(Cross(v1, v2)) == 0 && dcmp(Dot(v1, v2)) < 0; 121 } 122 123 //求多边形面积 124 double PolygonArea(Point* P, int n) 125 { 126 double ans = 0.0; 127 for(int i = 1; i < n - 1; ++i) 128 ans += Cross(P[i]-P[0], P[i+1]-P[0]); 129 return ans/2; 130 }
时间: 2024-10-15 16:43:45