BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
#include<cstdlib>
#include<map>
#define N 200005
#define ll long long
using namespace std;
int read(){
    int x=0,f=1;char ch=getchar();
    while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
int fa[N],mx[N];
int rt,lst,tot;
map<int,int> son[N];
int n;
ll ans=0;
void ins(int x){
  int p=lst,np=++tot;
  mx[np]=mx[p]+1;
  while(p&&!son[p][x]){
    son[p][x]=np;p=fa[p];
  }
  if(!p)fa[np]=rt;
  else{
    int q=son[p][x];
    if(mx[q]==mx[p]+1)fa[np]=q;
    else{
        int nq=++tot;
        mx[nq]=mx[p]+1;
        son[nq]=son[q];
        fa[nq]=fa[q];
        fa[np]=fa[q]=nq;
        while(son[p][x]==q&&p){
            son[p][x]=nq;p=fa[p];
        }
    }
  }
  lst=np;
  ans+=mx[np]-mx[fa[np]];
  printf("%lld\n",ans);
}
int main(){
    n=read();
    rt=tot=lst=1;
    for(int i=1;i<=n;i++){
        int x=read();
        ins(x);
    }
    return 0;
}

4516: [Sdoi2016]生成魔咒

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 459  Solved: 282
[Submit][Status][Discuss]

Description

魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示。例如可以将魔咒字符 1、2 拼凑起来形成一个魔咒串 [1,2]。

一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒。

例如 S=[1,2,1] 时,它的生成魔咒有 [1]、[2]、[1,2]、[2,1]、[1,2,1] 五种。S=[1,1,1] 时,它的生成魔咒有 [1]、

[1,1]、[1,1,1] 三种。最初 S 为空串。共进行 n 次操作,每次操作是在 S 的结尾加入一个魔咒字符。每次操作后都

需要求出,当前的魔咒串 S 共有多少种生成魔咒。

Input

第一行一个整数 n。

第二行 n 个数,第 i 个数表示第 i 次操作加入的魔咒字符。

1≤n≤100000。,用来表示魔咒字符的数字 x 满足 1≤x≤10^9

Output

输出 n 行,每行一个数。第 i 行的数表示第 i 次操作后 S 的生成魔咒数量

Sample Input

7
1 2 3 3 3 1 2

Sample Output

1
3
6
9
12
17
22

时间: 2024-10-29 04:05:51

BZOJ4516: [Sdoi2016]生成魔咒 后缀自动机的相关文章

[SDOI2016] 生成魔咒 - 后缀数组,平衡树,STL,时间倒流

[SDOI2016] 生成魔咒 Description 初态串为空,每次在末尾追加一个字符,动态维护本质不同的子串数. Solution 考虑时间倒流,并将串反转,则变为每次从开头删掉一个字符,即每次从后缀集合中删掉一个后缀. 预处理出后缀数组和高度数组后,用平衡树维护所有后缀集合(按照后缀排序),要删除一个后缀 \(S[sa[p],n]\) 时,找到它在平衡树上的前驱 \(u\) 和后继 \(v\) ,如果都存在,那么这一步的贡献就是 \[(n-sa[p]+1) - Max(h[p],h[v]

bzoj4516: [Sdoi2016]生成魔咒(SAM)

4516: [Sdoi2016]生成魔咒 题目:传送门 题解: 真奥义之SAM裸题... 其实对于当前新增节点x的操作,每次对ans的贡献就是dep[x]-dep[fail[x]](根据fail指针的定义随便YY) 然后有思路之后乍看题目每个x是10^9...瞬间GG %了已发cc然后被D飞,直接上map啊 代码: 1 #include<cstdio> 2 #include<cstring> 3 #include<cstdlib> 4 #include<cmath

Bzoj4516 [Sdoi2016]生成魔咒

Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 947  Solved: 529 Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2,1] 时,它的生成魔咒有 [1].[2].[1,2].[2,1].[1,2,1] 五种.S=[1,1,1] 时,它的生成魔咒有 [1]. [1,1].[

P4070 [SDOI2016]生成魔咒

题目地址:P4070 [SDOI2016]生成魔咒 相信看到题目之后很多人跟我的思路是一样的-- 肯定要用 SA(P3809 [模板]后缀排序) 肯定要会求本质不同的子串个数(P2408 不同子串个数) 然后?就不会了...... 瓶颈在哪儿? 你会发现每往后添加一个字符,整个 sa 数组只会插入一个数,要维护不难 但是 height 会无规律变化,这就导致无法高效维护 怎么办呢? 倒置字符串 我们将整个字符串倒置过来 显然本质不同的子串个数不会变化 而每往前添加一个字符串, height 的变

[Sdoi2016]生成魔咒[SAM or SA]

4516: [Sdoi2016]生成魔咒 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1017  Solved: 569[Submit][Status][Discuss] Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2,1] 时,它的生成魔咒有 [1].[2].[1,2].[2

[SDOI2016]生成魔咒

OJ题号: BZOJ4516 题目大意: 按顺序在一个序列的末尾插入数字,每次求出插入后能得到的本质不同的子串个数. 思路: 每次在SAM后加入这个数字,每次新出现的本质不同的子串个数就等于new_p->len-new_p->link->len. 由于数字范围比较大,可以考虑离散化或者map. 事实上也可以用hash,不过实践证明会比map还慢很多,内存也浪费很多. 另外需要注意开long long. 1 #include<map> 2 #include<cstdio&

●BZOJ 4516 [Sdoi2016]生成魔咒

题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4516 题解: 把串反过来后,问题变为求每个后缀的互不相同的子串个数.首先用倍增算法求出 sa[],rank[],height[],然后对 height[]数组建立 ST表.接着求出整个串的子串个数,ans+=N-sa[i]-height[i].(我从0开始编号的)式子的含义就是考虑每个后缀相比它的前一名,多了几个与之前不同的且串头为该后缀的头的子串. (一定要清晰地懂得并理解那个式子哦)

BZOJ 4516: [Sdoi2016]生成魔咒

Description 给出一串数字,求每次插入一个数字后本质不同的子串. Sol SAM. 在 SAM 上添加节点的时候统计一下 \(val[np]-val[par[np]]\) 就可以了... 用 map 存一下边,复杂度 \(O(nlogn)\) Code /************************************************************** Problem: 4516 User: BeiYu Language: C++ Result: Accept

【BZOJ4516】【SDOI2016】生成魔咒 [SAM]

生成魔咒 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 魔咒串由许多魔咒字符组成,魔咒字符可以用数字表示.例如可以将魔咒字符 1.2 拼凑起来形成一个魔咒串 [1,2]. 一个魔咒串 S 的非空字串被称为魔咒串 S 的生成魔咒. 例如 S=[1,2,1] 时,它的生成魔咒有 [1].[2].[1,2].[2,1].[1,2,1] 五种. S=[1,1,1] 时,它的生成魔咒有 [1].[