两个数的gcd为d,其实就是将这两个数同除以d后互质。本题中n是固定的,x是小于等于n的数,很容易想到可以枚举n的约数求出(n除以约数)的欧拉函数的和即是答案。
1 #include <iostream> 2 #include <cstring> 3 #include <cstdio> 4 using namespace std; 5 6 typedef long long ll; 7 8 int euler_phi( int n ) 9 { 10 int ans = n; 11 for ( int i = 2; i * i <= n; i++ ) 12 { 13 if ( n % i == 0 ) 14 { 15 ans = ans / i * ( i - 1 ); 16 do 17 { 18 n = n / i; 19 } 20 while ( n % i == 0 ); 21 } 22 } 23 if ( n > 1 ) 24 { 25 ans = ans / n * ( n - 1 ); 26 } 27 return ans; 28 } 29 30 int main () 31 { 32 int t; 33 scanf("%d", &t); 34 while ( t-- ) 35 { 36 int a, m; 37 scanf("%d%d", &a, &m); 38 ll res = 0; 39 for ( int i = 1; i * i <= a; i++ ) 40 { 41 if ( a % i ) continue; 42 if ( i >= m ) 43 { 44 res += euler_phi( a / i ); 45 } 46 if ( i * i == a ) continue; 47 if ( a / i >= m ) 48 { 49 res += euler_phi( i ); 50 } 51 } 52 printf("%I64d\n", res); 53 } 54 return 0; 55 }
时间: 2024-12-10 18:02:20