距离度量以及python实现(二)

接上一篇:http://www.cnblogs.com/denny402/p/7027954.html

7. 夹角余弦(Cosine)

也可以叫余弦相似度。 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。
(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:

(2) 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦
       类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。

  即:

       余弦取值范围为[-1,1]。求得两个向量的夹角,并得出夹角对应的余弦值,此余弦值就可以用来表征这两个向量的相似性。夹角越小,趋近于0度,余弦值越接近于1,它们的方向更加吻合,则越相似。当两个向量的方向完全相反夹角余弦取最小值-1。当余弦值为0时,两向量正交,夹角为90度。因此可以看出,余弦相似度与向量的幅值无关,只与向量的方向相关。

import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#方法一:根据公式求解
d1=np.dot(x,y)/(np.linalg.norm(x)*np.linalg.norm(y))

#方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=1-pdist(X,‘cosine‘)

两个向量完全相等时,余弦值为1,如下的代码计算出来的d=1。

d=1-pdist([x,x],‘cosine‘)

8. 皮尔逊相关系数(Pearson correlation)

(1) 皮尔逊相关系数的定义

前面提到的余弦相似度只与向量方向有关,但它会受到向量的平移影响,在夹角余弦公式中如果将 x 平移到 x+1, 余弦值就会改变。怎样才能实现平移不变性?这就要用到皮尔逊相关系数(Pearson correlation),有时候也直接叫相关系数

如果将夹角余弦公式写成:

表示向量x和向量y之间的夹角余弦,则皮尔逊相关系数则可表示为:

皮尔逊相关系数具有平移不变性和尺度不变性,计算出了两个向量(维度)的相关性。

在python中的实现:

import numpy as np
x=np.random.random(10)
y=np.random.random(10)

#方法一:根据公式求解
x_=x-np.mean(x)
y_=y-np.mean(y)
d1=np.dot(x_,y_)/(np.linalg.norm(x_)*np.linalg.norm(y_))

#方法二:根据numpy库求解
X=np.vstack([x,y])
d2=np.corrcoef(X)[0][1]

相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。

9. 汉明距离(Hamming distance)
(1)汉明距离的定义
       两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”与“1001”之间的汉明距离为2。
       应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。

在python中的实现:

import numpy as np
from scipy.spatial.distance import pdist
x=np.random.random(10)>0.5
y=np.random.random(10)>0.5

x=np.asarray(x,np.int32)
y=np.asarray(y,np.int32)

#方法一:根据公式求解
d1=np.mean(x!=y)

#方法二:根据scipy库求解
X=np.vstack([x,y])
d2=pdist(X,‘hamming‘)

10. 杰卡德相似系数(Jaccard similarity coefficient)
(1) 杰卡德相似系数
       两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。

  杰卡德相似系数是衡量两个集合的相似度一种指标。
(2) 杰卡德距离
       与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。杰卡德距离可用如下公式表示:

  杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。
(3) 杰卡德相似系数与杰卡德距离的应用
       可将杰卡德相似系数用在衡量样本的相似度上。
  样本A与样本B是两个n维向量,而且所有维度的取值都是0或1。例如:A(0111)和B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。

在python中的实现:

import numpy as np
from scipy.spatial.distance import pdist
x=np.random.random(10)>0.5
y=np.random.random(10)>0.5

x=np.asarray(x,np.int32)
y=np.asarray(y,np.int32)

#方法一:根据公式求解
up=np.double(np.bitwise_and((x != y),np.bitwise_or(x != 0, y != 0)).sum())
down=np.double(np.bitwise_or(x != 0, y != 0).sum())
d1=(up/down)

#方法二:根据scipy库求解
X=np.vstack([x,y])
d2=pdist(X,‘jaccard‘)

11. 布雷柯蒂斯距离(Bray Curtis Distance)

10. 卡方距离(Ki-square Distance)

时间: 2024-10-08 15:14:59

距离度量以及python实现(二)的相关文章

概率分布之间的距离度量以及python实现

1. 欧氏距离(Euclidean Distance)       欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式.(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:(3)两个n维向量a(x11,x12,-,x1n)与 b(x21,x22,-,x2n)间的欧氏距离:(4)也可以用表示成向量运算的形式: python中的实现: 方法一: import numpy as np x=

概率分布之间的距离度量以及python实现(四)

1.f 散度(f-divergence) KL-divergence 的坏处在于它是无界的.事实上KL-divergence 属于更广泛的 f-divergence 中的一种. 如果P和Q被定义成空间中的两个概率分布,则f散度被定义为: 一些通用的散度,如KL-divergence, Hellinger distance, 和total variation distance,都是f散度的一种特例.只是f函数的取值不同而也. 在python中的实现 : import numpy as np imp

距离度量以及python实现(一)

转自: https://www.cnblogs.com/denny402/p/7027954.html 1. 欧氏距离(Euclidean Distance)       欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式.(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:(3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:(4)也可

从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任)

【Matlab开发】matlab中bar绘图设置与各种距离度量

[Matlab开发]matlab中bar绘图设置与各种距离度量 标签(空格分隔): [Matlab开发] [机器学习] 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ Matlab Bar图如何为每个bar设置不同颜色 data = [3, 7, 5, 2;4, 3, 2, 9;6, 6, 1, 4]; b = bar(data); 使用bar绘制非常直观简单,但有时需要突出显示某一个bar,比如该bar是一个标杆,用来衡量其bar的高度,所以可以用醒目

机器学习中的距离度量

在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance).采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否. 本文的目的就是对常用的相似性度量作一个总结. 本文目录: 1. 欧氏距离 2. 曼哈顿距离 3. 切比雪夫距离 4. 闵可夫斯基距离 5. 标准化欧氏距离 6. 马氏距离 7. 夹角余弦 8. 汉明距离 9. 杰卡德距离 & 杰卡德相似系数 10. 相关系数 & 相关距离

ML 07、机器学习中的距离度量

机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时,文章中会有一些对知识点的个人理解和归纳补充,不代表原文章作者的意图. 1. 欧氏距离 欧氏距离是最常见的两点之间或多点之间的距离表示法,又称之为欧几里得度量,它定义于欧几里得空间中,如点 $x = (x_1,\cdots,x_n)$ 和$y = (y_2,\cdots,y_n)$之间的距离为: $$

距离度量学习

为什么学习距离度量? 在机器学习中,对高维数据进行降维的主要目的是希望找到一个合适的低维空间,在此空间中进行学习能比原始空间性能更好.事实上,每个空间对应了在样本属性上定义的一个距离度量,而寻找合适的空间,实质上就是在寻找一个合适的距离度量.那么,为何不直接尝试" 学习" 出一个合适的距离度量呢?这就是度量学习(metric learning)的基本动机. 扩展 度量学习的目的是在样本上学习距离度量函数. 距离度量函数必须服从4个公理非负性,对称性,次可加性及不可分与同一性.在实践中,

[Python 学习] 二、在Linux平台上使用Python

这一节,主要介绍在Linux平台上如何使用Python 1. Python安装. 现在大部分的发行版本都是自带Python的,所以可以不用安装.如果要安装的话,可以使用对应的系统安装指令. Fedora系统:先以root登入,运行 yum install python Ubuntu系统:在root组的用户, 运行 sudo apt-get install python 2. 使用的Python的脚本 Linux是一个以文件为单位的系统,那么我们使用的Python是哪一个文件呢? 这个可以通过指令