spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析

今天和大家一起探讨和分下一下SPSS-非参数检验--K个独立样本检验 ( Kruskal-Wallis检验)。

还是以SPSS教程为例:

假设:HO:   不同地区的儿童,身高分布是相同的

H1:
不同地区的儿童,身高分布是不同的

不同地区儿童身高样本数据如下所示:

提示:此样本数为4个(北京,上海,成都 ,广州)每个样本的样本量(观察数)都为5个

即:K=4>3   n=5,  此时如果样本逐渐增大,呈现出自由度为K-1的平方的分布,(即指:卡方检验)

点击“分析”——非参数检验——旧对话框——K个独立样本检验,进入如下界面:

将“周岁儿童身高”变量拖入右侧“检验变量列表”内, 将“城市(CS)变量” 拖入“分组变量”内,点击“定义范围”
输入“最小值”和“最大值”(这里的变量类型必须为“数字型”)如果不是数字型,必须要先定义或者重新编码。

在“检验类型”下面选择“秩和检验”( Kruskal-Wallis检验)点击确定

运行结果如下所示:

对结果进行分析如下:

1:从“检验统计量a,b”表中可以看出:秩和统计量为:13.900

自由度为:3=k-1=4-1

下面来看看“秩和统计量”的计算过程,如下所示:

假设“秩和统计量”为 kw    那么:

其中:n+1/2   为全体样本的“秩平均”     Ri./ni  
为第i个样本的秩平均    Ri.代表第i个样本的秩和, ni代表第i个样本的观察数)

最后得到的公式为:

北京地区的“秩和”为:   秩平均*观察数(N) = 14.4*5=72

上海地区的“秩和”为:8.2*5=41

成都地区的“秩和”为:15.8*5=79

广州地区的“秩和”为:3.6*5=18

接近13.90  (由于中间的计算,我采用四舍五入,丢弃了部分数值,所以,会有部分误差)

2:“检验统计量a,b”表中可以看出:“渐进显著性为0.003, 由于0.003<0.01  所以得出结论:

H1: 不同地区的儿童,身高分布是不同的

时间: 2024-10-08 10:08:49

spss-非参数检验-K多个独立样本检验( Kruskal-Wallis检验)案例解析的相关文章

SPSS-Friedman 秩和检验-非参数检验-K个相关样本检验 案例解析

三人行,必有我师,是不是真有我师?三种不同类型的营销手段,最终的营销效果是否一样,随即区组秩和检验带你进入分析世界 今天跟大家讨论和分享一下:spss-Friedman 秩和检验-非参数检验-K个(多个)相关样本检验,下面以"数学,物理,生物"样本数据为例, 假设:H0:  数学,物理,生物三门课程的总体分布是相同的 H1:数学,物理,生物三门课程的总体分布是不相同的. 样本数据如下所示: 从上图可以看出:处理组为:3组 (假设用K表示)      区组为:5组 (我们只取前面的5组)

SPSS-非参数检验—两独立样本检验 案例解析

今天跟大家研究和分享一下:spss非参数检验--两独立样本检验, 我还是引用教程里面的案例,以:一种产品有两种不同的工艺生产方法,那他们的使用寿命分别是否相同 下面进行假设:1:一种产品两种不同的工艺生产方法,他们的使用寿命分布是相同的 2:一种产品两种不同的工艺生产方法,他们的使用寿命分布是不相同的 我们采用SPSS进行分析,数据如下所示: 点击"分析"选择"非参数检验" 再选择"旧对话框--2个独立样本检验   如下所示: 在检验类型 下面 选择&qu

统计学常用概念:T检验、F检验、卡方检验、P值、自由度

1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很 少.很罕有的情况下才出现:那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够

T检验与F检验的区别_f检验和t检验的关系

1,T检验和F检验的由来 一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.很罕有的情况下才出现:那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒

通俗理解T检验与F检验的区别【转】

转自:http://blog.sina.com.cn/s/blog_4ee13c2c01016div.html1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定. 通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.

通俗理解T检验与F检验的区别

声明:此文内容来源于网络,本文只作用个性化标注和解释说明. 1.T检验和F检验的由来    一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定.    通过把所得到的统计检定值[1],与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果.倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少.很罕有的情况下才出现:那我们便

u检验、t检验、F检验、X2检验 (转)

http://blog.renren.com/share/223170925/14708690013 常用显著性检验 1.t检验 适用于计量资料.正态分布.方差具有齐性的两组间小样本比较.包括配对资料间.样本与均数间.两样本均数间比较三种,三者的计算公式不能混淆. 2.t'检验 应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式. 3.U检验 应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验.

SPSS中,进行两独立样本T检验

一.验证两独立样本数据是否符合正态分布(分析-描述统计-探索),若不符合对数据进行处理,若符合进行第二步: 关注正态分布结果: (1)单样本的K-S检验是用来检验一个数据的观测经验分布是否是已知的理论分布.当两者间的差距很小时,推断该样本取自已知的理论分布. 作为零假设的理论分布一般是一维连续分布 F(如正态分布.均匀分布.指数分布等),有时也用于离散分布(如Poisson分布).即H0:总体X 服从某种一维连续分布 F.检验统计量为: (2)Shapiro-Wilk检验法是S.S.Shapir

SPSS-比较均值-独立样本T检验 案例解析

在使用SPSS进行单样本T检验时,很多人都会问,如果数据不符合正太分布,那还能够进行T检验吗?而大样本,我们一般会认为它是符合正太分布的,在鈡型图看来,正太分布,基本左右是对称的,一般具备两个参数,数学期望和标准方差,即:N(p, Q) 如果你的样本数非常少,一般需要进行正太分布检验,检验的方法网上很多,我就不说了 下面以"雄性老鼠和雌性老鼠分别注射了某种毒素,经过观察分析,进行随机取样,查看最终老鼠是否活着. 问题:很多人认为,雄性老鼠和雌性老鼠分别注射毒液后,雌性老鼠存活下来的数量会比雄性老