poj 2785 4 Values whose Sum is 0(sort+二分)

题意:

给你ABCD四个集合,集合中数的个数都为N(N<=4000),如果分别在ABCD四个集合中取一个数,a b c d ,求有多少种可能使得a+b+c+d=0。

当然你可以尝试枚举所有的组合,绝对可以计算出结果,大概有N^4种吧,如果你有足够的时间还是可以算出来的,哈哈。

当然我不是用上面一种方法计算的,那样算肯定超时。 我的做法是求出所有a+b 到ab数组中, 和所有 c+d到cd数组中,然后排序,枚举每个ab,用二分在cd中查找有没有可能组成0。  有个问题就是二分只能返回一个结果,所以我对二分函数进行了改造,让它返回和要找的值相等的个数。

#include <stdio.h>
#include <algorithm>

using namespace std;
const int N = 4005;
int a[N], b[N], c[N], d[N];
int ab[N*N], cd[N*N];
int n, m;

int binarysearch(int l, int r, int v)
{
    if (l == r)
    {
        int cnt = 0;
        int lift = l;
        while (lift >= 0)
        {
            if (cd[lift] == v)
                cnt++;
            else
                break;
            lift--;
        }
        int right = l+1;
        while (right < m)
        {
            if (cd[right] == v)
                cnt++;
            else
                break;
            right++;
        }
        return cnt;
    }
    int mid = (l+r)>>1;
    if (v <= cd[mid])
        return binarysearch(l, mid, v);
    else
        return binarysearch(mid+1, r, v);
}

int main()
{
    while (scanf("%d", &n) != EOF)
    {
        for (int i = 0; i < n; i++)
        {
            scanf("%d %d %d %d", &a[i], &b[i], &c[i], &d[i]);
        }
        int cnt = 0;
        for (int i = 0; i < n; i++)
        {
            for (int j = 0; j < n; j++)
            {
                ab[cnt] = a[i]+b[j];
                cd[cnt] = c[i]+d[j];
                cnt++;
            }
        }
        int ans = 0;
        m = n*n;
        sort(cd, cd+m);
        for (int i = 0; i < m; i++)
        {
            ans += binarysearch(0, m-1, -ab[i]);
        }
        printf("%d\n", ans);
    }
    return 0;
}

poj 2785 4 Values whose Sum is 0(sort+二分)

时间: 2024-11-03 22:41:59

poj 2785 4 Values whose Sum is 0(sort+二分)的相关文章

POJ 2785 4 Values whose Sum is 0(双向搜索+二分)

题意:给4个数组,从每个数组中选一个数,求出4个数和为0的方案数. 分析:暴力时间复杂度为N^3,肯定不行.所以考虑先把ab.cd的和分别求出来.-(a+b)=c+d即满足条件,求和复杂度为N*N.ab数组为-(a+b),cd数组为(c+d). 从cd数组里找等于ab数组的即可.这里可以先给数组排序 ,然后用二分搜索找.复杂度为O(N*N*logN). #include<iostream> #include<cstdio> #include<cstring> #incl

poj 2785 4 Values whose Sum is 0 (简单二分)

//每列选一个数相加为0的个数 # include <stdio.h> # include <algorithm> # include <string.h> using namespace std; int ab[4010*4010],cd[4010*4010]; int main() { int n,i,k,j,count,a[4010],b[4010],c[4010],d[4010]; while(~scanf("%d",&n)) { f

POJ 2785 4 Values whose Sum is 0 (对半分解 二分搜索)

4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 17658   Accepted: 5187 Case Time Limit: 5000MS Description The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how

POJ 2785 4 Values whose Sum is 0 [二分]

传送门 13773503 njczy2010 2785 Accepted 25248K 7079MS G++ 1423B 2015-01-11 10:26:48 4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 16102   Accepted: 4659 Case Time Limit: 5000MS Description The SUM problem can be

POJ 2785 4 Values whose Sum is 0(折半枚举)

4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 17088   Accepted: 4998 Case Time Limit: 5000MS Description The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how

POJ 2785 4 Values whose Sum is 0

4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 22691   Accepted: 6869 Case Time Limit: 5000MS Description The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how

poj 2785 4 Values whose Sum is 0 哈希

题意: 给4个集合ABCD,问有多少种从中各取一个数和为0的方案. 分析: 枚举前两个数建哈希表,枚举后两个数查找即可. 代码: //poj 2785 //sep9 #include <iostream> using namespace std; const int maxN=4012; const int maxM=3999972; int a[maxN],b[maxN],c[maxN],d[maxN]; int hash[maxM+10]; int e; struct Edge { int

poj 2785 4 Values whose Sum is 0 折半枚举

题目链接:http://poj.org/problem?id=2785 枚举的一般思路就是先把所有的状态枚举出来 最后一次性判断该状态合法不合法 而折半枚举的思想是 先枚举一半的状态 把他们的状态存起来 排序 然后再枚举剩下一般 用目标反推前一半的期望状态 接下来在前一半的结果数组中查找是否有相应结果 之所以能优化是因为结果数组有序 就可以用二分搜索 复杂度从O(n^2 * n^2) 降到 O(n^2 * log(n^2))即(O(n^2 * log n)) 二分搜索的一个技巧 在有序数组中用二

poj 2785 4 Values whose Sum is 0(折半枚举(双向搜索))

Description The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the s