1、图的定义
图:是一种灵活的数据结构,一般作为一种模型用来定义对象之间的关系或者联系。对象由顶点表示,而对象之间的关系或关联则通过顶点之间的边来表示。
2、图的应用
图算法、统计网络跳数、拓扑排序、图着色、哈密顿圈问题、分团问题、可序列化冲突
3、图的代码实现
/*graph.h*/ #ifndef GRAPH_H #define GRAPH_H #include <stdlib.h> #include "list.h" #include "set.h" /*define a structure for adjacency lists*/ typedef struct AdjList_ { void *vertex; Set adjacent; }AdjList; /*define structure for graphs*/ typedef struct Graph_ { int vcount; int ecount; int (*match)(const void *key1,const void *key2); void (*destroy)(void *data); List adjlists; }Graph; /*define colors for vertices in graphs*/ typedef enum VertexColor_ {white,gray,black} VertexColor; /*public interface*/ void graph_init(Graph *graph,int (*match)(const void *key1,const void *key2),void (*destroy)(void *data)); void graph_destroy(Graph *graph); int graph_ins_vertex(Graph *graph,const void *data); int graph_ins_edge(Graph *graph,const void *data1,const void *data2); int graph_rem_vertex(Graph *graph,void **data); int graph_rem_edge(Graph *graph,void *data1,void **data2); int graph_adjlist(const Graph *graph,const void *data,AdjList **adjlist); int graph_is_adjacent(const Graph *graph,const void *data1,const void *data2); #define graph_adjlists(graph) ((graph)->dajlists) #define graph_vcount(graph) ((graph)->vcount) #define graph_ecount(graph) ((graph)->ecount) #endif
/*graph.c*/ #include<stdlib.h> #include<string.h> #include"graph.h" #include"list.h" #include"set.h" void graph_init(Graph *graph,int (*match)(const void *key1,const void *key2),void (*destroy)(void *data)) { /*initialize the graph*/ graph->vcount=0; graph->ecount=0; graph->match=match; graph->destroy=destroy; /*initialize the list of adjacentcy-list structure*/ list_init(&graph->adjlists,NULL); return ; } void graph_destroy(Graph *graph) { AdjList *adjlist; /*remove each adjacency-list structure and destroy its adjacency list*/ while(list_size(&graph->adjlists)>0) { if(list_rem_next(&graph->adjlists,NULL,(void **)&adjlist)==0) { set_destroy(&adjlist->adjacent); if(graph->destroy!=NULL) graph->destroy(adjlist->vertex); free(adjlist); } } /*destroy the list of adjacency-list structures,which is now empty*/ list_destroy(&graph->adjlists); /*clear the structure*/ memset(graph,0,sizeof(Graph)); return ; } int graph_ins_vertex(Graph *graph,const void *data) { ListElmt *element; AdjList *adjlist; int retval; /*do not allow the insertion of duplicate vertices*/ for(element=list_head(&graph->adjlists);element !=NULL;element=list_next(element)) { if(graph->match(data,((AdjList *)list_data(element))->vertex)) return 1; } /*insert the vertex*/ if((adjlist=(AdjList *)malloc(sizeof(AdjList)))==NULL) return -1; adjlist->vertex=(void *)data; set_init(&adjlist->adjacent,graph->match,NULL); if((retval=list_ins_next(&graph->adjlists,list_tail(&graph->adjlists),adjlist))!=0) { return retval; } /*adjust the vertex count to account for the inserted vetex*/ graph->vcount++; return 0; } int graph_ins_edge(Graph *graph,const void *data1,const void *data2) { ListElmt *element; int retval; /*do not allow insertion of an edge without both its vertices in the graph*/ for(element=list_head(&graph->adjlists);element !=NULL;element=list_next(element)) { if(graph->match(data2,((AdjList *)list_data(element))->vertex)) break; } if(element==NULL) return -1; for(element=list_head(&graph->adjlists);element !=NULL;element=list_next(element)) { if(graph->match(data1,((AdjList *)list_data(element))->vertex)) break; } if(element==NULL) return -1; /*insert the second vertex into the adjacency list of the first vertex*/ if((retval=set_insert(&((AdjList *)list_data(element))->adjacent,data2))!=0) { return retval; } /*Adjust the edge count to account for the inserted edge*/ graph->ecount++; return 0; } int graph_rem_vertex(Graph *graph,void **data) { ListElmt *element,*temp,*prev; AdjList *adjlist; int found; /*traverse each adjacency list and the vertice it contains*/ prev=NULL; found=0; for(element=list_head(&graph->adjlists);element !=NULL;element=list_next(element)) { /*do not allow removal of the vertex if it is in an adjacency list*/ if(set_is_member(&((AdjList *)list_data(element))->adjacent,*data)) return -1; /*keep a pointer to the vertex to be removed*/ if(graph->match(*data,((AdjList *)list_data(element))->vertex)) { temp=element; found=1; } /*keep a pointer to the vertex before the vertex to be removed*/ if(!found) prev=element; } /*return if the vertex was not found*/ if(!found) return -1; /*do not allow removal of the tex if its adjacency list is not empty*/ if(set_size(&((AdjList *)list_data(temp))->adjacent)>0) return -1; /*remove the vertex*/ if(list_rem_next(&graph->adjlists,prev,(void **)&adjlist)!=0) return -1; /*free the storage allocated by the abstract datatype*/ *data=adjlist->vertex; free(adjlist); /*adjust the vertex count to account for the removed vertex*/ graph->vcount--; return 0; } int graph_rem_edge(Graph *graph,void *data1,void **data2) { ListElmt *element; /*locate the adjacency list for the first vertex*/ for(element=list_head(&graph->adjlists);element !=NULL;element=list_next(element)) { if(graph->match(data1,((AdjList *)list_data(element))->vertex)) break; } if(element==NULL) return -1; /*remove the second vertex from the adjacency list of the first vertex*/ if(set_remove(&((AdjList *)list_data(element))->adjacent,data2)!=0) return -1; /*adjust the edge count to account for the removed edge*/ graph->ecount--; return 0; } int graph_adjlist(const Graph *graph,const void *data,AdjList **adjlist) { ListElmt *element,*prev; /*locate the adjacency list for the vertex*/ prev=NULL; for(element=list_head(&graph->adjlists);element !=NULL;element=list_next(element)) { if(graph->match(data,((AdjList *)list_data(element))->vertex)) break; } /*return if the vertex was not found*/ if(element==NULL) return -1; /*pass back the adjacency list for the vertex*/ *adjlist=list_data(element); return 0; } int graph_is_adjacent(const Graph *graph,const void *data1,const void *data2) { ListElmt *element,*prev; /*locate the adjacency list for the first vertex*/ prev=NULL; for(element=list_head(&graph->adjlists);element !=NULL;element=list_next(element)) { if(graph->match(data1,((AdjList *)list_data(element))->vertex)) break; prev=element; } /*return if the vertex was not found*/ if(element==NULL) return 0; /*return whether the second vertex is in the adjacency list of the first*/ return set_is_member(&((AdjList *)list_data(element))->adjacent,data2); }
应用实例:
后续补上
数据结构-图
时间: 2024-10-25 11:57:38