哈夫曼树——c++

哈夫曼树的介绍

Huffman Tree,中文名是哈夫曼树或霍夫曼树,它是最优二叉树。

定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若树的带权路径长度达到最小,则这棵树被称为哈夫曼树。 这个定义里面涉及到了几个陌生的概念,下面就是一颗哈夫曼树,我们来看图解答。

(01) 路径和路径长度

定义:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1。 
例子:100和80的路径长度是1,50和30的路径长度是2,20和10的路径长度是3。

(02) 结点的权及带权路径长度

定义:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积。 
例子:节点20的路径长度是3,它的带权路径长度= 路径长度 * 权 = 3 * 20 = 60。

(03) 树的带权路径长度

定义:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL。 
例子:示例中,树的WPL= 1*100 + 2*80 + 3*20 + 3*10 = 100 + 160 + 60 + 30 = 350。

比较下面两棵树

上面的两棵树都是以{10, 20, 50, 100}为叶子节点的树。

左边的树WPL=2*10 + 2*20 + 2*50 + 2*100 = 360 
右边的树WPL=350

左边的树WPL > 右边的树的WPL。你也可以计算除上面两种示例之外的情况,但实际上右边的树就是{10,20,50,100}对应的哈夫曼树。至此,应该堆哈夫曼树的概念有了一定的了解了,下面看看如何去构造一棵哈夫曼树。

哈夫曼树的图文解析

假设有n个权值,则构造出的哈夫曼树有n个叶子结点。 n个权值分别设为 w1、w2、…、wn,哈夫曼树的构造规则为:

1. 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点); 
2. 在森林中选出根结点的权值最小的两棵树进行合并,作为一棵新树的左、右子树,且新树的根结点权值为其左、右子树根结点权值之和; 
3. 从森林中删除选取的两棵树,并将新树加入森林; 
4. 重复(02)、(03)步,直到森林中只剩一棵树为止,该树即为所求得的哈夫曼树。

以{5,6,7,8,15}为例,来构造一棵哈夫曼树。

第1步:创建森林,森林包括5棵树,这5棵树的权值分别是5,6,7,8,15。 
第2步:在森林中,选择根节点权值最小的两棵树(5和6)来进行合并,将它们作为一颗新树的左右孩子(谁左谁右无关紧要,这里,我们选择较小的作为左孩子),并且新树的权值是左右孩子的权值之和。即,新树的权值是11。 然后,将"树5"和"树6"从森林中删除,并将新的树(树11)添加到森林中。 
第3步:在森林中,选择根节点权值最小的两棵树(7和8)来进行合并。得到的新树的权值是15。 然后,将"树7"和"树8"从森林中删除,并将新的树(树15)添加到森林中。 
第4步:在森林中,选择根节点权值最小的两棵树(11和15)来进行合并。得到的新树的权值是26。 然后,将"树11"和"树15"从森林中删除,并将新的树(树26)添加到森林中。 
第5步:在森林中,选择根节点权值最小的两棵树(15和26)来进行合并。得到的新树的权值是41。 然后,将"树15"和"树26"从森林中删除,并将新的树(树41)添加到森林中。 
此时,森林中只有一棵树(树41)。这棵树就是我们需要的哈夫曼树!

哈夫曼树的基本操作

哈夫曼树的重点是如何构造哈夫曼树。本文构造哈夫曼时,用到了以前介绍过的"(二叉堆)最小堆"。下面对哈夫曼树进行讲解。

1. 基本定义

template <class T>
class HuffmanNode{
    public:
        T key;              // 权值
        HuffmanNode *left;  // 左孩子
        HuffmanNode *right; // 右孩子
        HuffmanNode *parent;// 父结点

        HuffmanNode(){}
        HuffmanNode(T value, HuffmanNode *l, HuffmanNode *r, HuffmanNode *p):
            key(value),left(l),right(r),parent(p) {}
};

HuffmanNode是哈夫曼树的节点类。

template <class T>
class Huffman {
    private:
        HuffmanNode<T> *mRoot;  // 根结点

    public:
        Huffman();
        ~Huffman();

        // 前序遍历"Huffman树"
        void preOrder();
        // 中序遍历"Huffman树"
        void inOrder();
        // 后序遍历"Huffman树"
        void postOrder();

        // 创建Huffman树
        void create(T a[], int size);
        // 销毁Huffman树
        void destroy();

        // 打印Huffman树
        void print();
    private:
        // 前序遍历"Huffman树"
        void preOrder(HuffmanNode<T>* tree) const;
        // 中序遍历"Huffman树"
        void inOrder(HuffmanNode<T>* tree) const;
        // 后序遍历"Huffman树"
        void postOrder(HuffmanNode<T>* tree) const;

        // 销毁Huffman树
        void destroy(HuffmanNode<T>* &tree);

        // 打印Huffman树
        void print(HuffmanNode<T>* tree, T key, int direction);
};

Huffman是哈夫曼树对应的类,它包含了哈夫曼树的根节点和哈夫曼树的相关操作。

2. 构造哈夫曼树

/*
 * 创建Huffman树
 *
 * 参数说明:
 *     a 权值数组
 *     size 数组大小
 *
 * 返回值:
 *     Huffman树的根节点
 */
template <class T>
void Huffman<T>::create(T a[], int size)
{
    int i;
    HuffmanNode<T> *left, *right, *parent;
    MinHeap<T> *heap = new MinHeap<T>();

    // 建立数组a对应的最小堆
    heap->create(a, size);

    for(i=0; i<size-1; i++)
    {
        left = heap->dumpFromMinimum();  // 最小节点是左孩子
        right = heap->dumpFromMinimum(); // 其次才是右孩子

        // 新建parent节点,左右孩子分别是left/right;
        // parent的大小是左右孩子之和
        parent = new HuffmanNode<T>(left->key+right->key, left, right, NULL);
        left->parent = parent;
        right->parent = parent;

        // 将parent节点数据拷贝到"最小堆"中
        if (heap->copyOf(parent)!=0)
        {
            cout << "插入失败!" << endl << "结束程序" << endl;
            destroy(parent);
            parent = NULL;
            break;
        }
    }

    mRoot = parent;

    // 销毁最小堆
    heap->destroy();
    delete heap;
}

首先通过heap->create(a, size)来创建最小堆。最小堆构造完成之后,进入for循环。

每次循环时:

(01) 首先,将最小堆中的最小节点拷贝一份并赋值给left,然后重塑最小堆(将最小节点和后面的节点交换位置,接着将"交换位置后的最小节点"之前的全部元素重新构造成最小堆); 
(02) 接着,再将最小堆中的最小节点拷贝一份并将其赋值right,然后再次重塑最小堆; 
(03) 然后,新建节点parent,并将它作为left和right的父节点; 
(04) 接着,将parent的数据复制给最小堆中的指定节点。

二叉堆中已经介绍过堆,这里就不再对堆的代码进行说明了。若有疑问,直接参考后文的源码。其它的相关代码,也Please RTFSC(Read The Fucking Source Code)!

哈夫曼树的完整源码

1. 哈夫曼树的节点类 (HuffmanNode.h)

/**
 * Huffman树节点类
 *
 * @author skywang
 * @date 2014/03/25
 */

#ifndef _HUFFMAN_NODE_HPP_
#define _HUFFMAN_NODE_HPP_

template <class T>
class HuffmanNode{
    public:
        T key;                // 权值
        HuffmanNode *left;    // 左孩子
        HuffmanNode *right;    // 右孩子
        HuffmanNode *parent;// 父结点

        HuffmanNode(){}
        HuffmanNode(T value, HuffmanNode *l, HuffmanNode *r, HuffmanNode *p):
            key(value),left(l),right(r),parent(p) {}
};

#endif

2.哈夫曼树的实现文件(Huffman.h)

/**
 * C++实现的Huffman树。
 *
 * 构造Huffman树时,使用到了最小堆。
 *
 * @author skywang
 * @date 2014/03/25
 */

#ifndef _HUFFMAN_TREE_HPP_
#define _HUFFMAN_TREE_HPP_

#include <iomanip>
#include <iostream>
#include "HuffmanNode.h"
#include "MinHeap.h"
using namespace std;

template <class T>
class Huffman {
    private:
        HuffmanNode<T> *mRoot;    // 根结点

    public:
        Huffman();
        ~Huffman();

        // 前序遍历"Huffman树"
        void preOrder();
        // 中序遍历"Huffman树"
        void inOrder();
        // 后序遍历"Huffman树"
        void postOrder();

        // 创建Huffman树
        void create(T a[], int size);
        // 销毁Huffman树
        void destroy();

        // 打印Huffman树
        void print();
    private:
        // 前序遍历"Huffman树"
        void preOrder(HuffmanNode<T>* tree) const;
        // 中序遍历"Huffman树"
        void inOrder(HuffmanNode<T>* tree) const;
        // 后序遍历"Huffman树"
        void postOrder(HuffmanNode<T>* tree) const;

        // 销毁Huffman树
        void destroy(HuffmanNode<T>* &tree);

        // 打印Huffman树
        void print(HuffmanNode<T>* tree, T key, int direction);
};

/*
 * 构造函数
 */
template <class T>
Huffman<T>::Huffman():mRoot(NULL)
{
}

/*
 * 析构函数
 */
template <class T>
Huffman<T>::~Huffman()
{
    destroy();
}

/*
 * 前序遍历"Huffman树"
 */
template <class T>
void Huffman<T>::preOrder(HuffmanNode<T>* tree) const
{
    if(tree != NULL)
    {
        cout<< tree->key << " " ;
        preOrder(tree->left);
        preOrder(tree->right);
    }
}

template <class T>
void Huffman<T>::preOrder()
{
    preOrder(mRoot);
}

/*
 * 中序遍历"Huffman树"
 */
template <class T>
void Huffman<T>::inOrder(HuffmanNode<T>* tree) const
{
    if(tree != NULL)
    {
        inOrder(tree->left);
        cout<< tree->key << " " ;
        inOrder(tree->right);
    }
}

template <class T>
void Huffman<T>::inOrder()
{
    inOrder(mRoot);
}

/*
 * 后序遍历"Huffman树"
 */
template <class T>
void Huffman<T>::postOrder(HuffmanNode<T>* tree) const
{
    if(tree != NULL)
    {
        postOrder(tree->left);
        postOrder(tree->right);
        cout<< tree->key << " " ;
    }
}

template <class T>
void Huffman<T>::postOrder()
{
    postOrder(mRoot);
}

/*
 * 创建Huffman树
 *
 * 参数说明:
 *     a 权值数组
 *     size 数组大小
 *
 * 返回值:
 *     Huffman树的根节点
 */
template <class T>
void Huffman<T>::create(T a[], int size)
{
    int i;
    HuffmanNode<T> *left, *right, *parent;
    MinHeap<T> *heap = new MinHeap<T>();

    // 建立数组a对应的最小堆
    heap->create(a, size);

    for(i=0; i<size-1; i++)
    {
        left = heap->dumpFromMinimum();  // 最小节点是左孩子
        right = heap->dumpFromMinimum(); // 其次才是右孩子

        // 新建parent节点,左右孩子分别是left/right;
        // parent的大小是左右孩子之和
        parent = new HuffmanNode<T>(left->key+right->key, left, right, NULL);
        left->parent = parent;
        right->parent = parent;

        // 将parent节点数据拷贝到"最小堆"中
        if (heap->copyOf(parent)!=0)
        {
            cout << "插入失败!" << endl << "结束程序" << endl;
            destroy(parent);
            parent = NULL;
            break;
        }
    }

    mRoot = parent;

    // 销毁最小堆
    heap->destroy();
    delete heap;
}

/*
 * 销毁Huffman树
 */
template <class T>
void Huffman<T>::destroy(HuffmanNode<T>* &tree)
{
    if (tree==NULL)
        return ;

    if (tree->left != NULL)
        return destroy(tree->left);
    if (tree->right != NULL)
        return destroy(tree->right);

    delete tree;
    tree=NULL;
}

template <class T>
void Huffman<T>::destroy()
{
    destroy(mRoot);
}

/*
 * 打印"Huffman树"
 *
 * key        -- 节点的键值
 * direction  --  0,表示该节点是根节点;
 *               -1,表示该节点是它的父结点的左孩子;
 *                1,表示该节点是它的父结点的右孩子。
 */
template <class T>
void Huffman<T>::print(HuffmanNode<T>* tree, T key, int direction)
{
    if(tree != NULL)
    {
        if(direction==0)    // tree是根节点
            cout << setw(2) << tree->key << " is root" << endl;
        else                // tree是分支节点
            cout << setw(2) << tree->key << " is " << setw(2) << key << "‘s "  << setw(12) << (direction==1?"right child" : "left child") << endl;

        print(tree->left, tree->key, -1);
        print(tree->right,tree->key,  1);
    }
}

template <class T>
void Huffman<T>::print()
{
    if (mRoot != NULL)
        print(mRoot, mRoot->key, 0);
}

#endif

3.哈夫曼树对应的最小堆(MinHeap.h)

/**
 * 最小堆:为Huffman树服务的。
 *
 * @author skywang
 * @date 2014/03/25
 */

#ifndef _HUFFMAN_MIN_HEAP_HPP_
#define _HUFFMAN_MIN_HEAP_HPP_

#include "HuffmanNode.h"

template <class T>
class MinHeap {
    private:
        HuffmanNode<T> *mHeap;    // 最小堆的数组
        int mCapacity;            // 总的容量
        int mSize;                // 当前有效数据的数量
    private:
        // 上调算法
        void filterUp(int start);
        // 下调算法
        void filterDown(int start, int end);
        // 交换两个HuffmanNode节点的全部数据,i和j是节点索引。
        void swapNode(int i, int j);
    public:
        MinHeap();
        ~MinHeap();

        // 将node的全部数据拷贝给"最小堆的指定节点"
        int copyOf(HuffmanNode<T> *node);
        // 获取最小节点
        HuffmanNode<T>* dumpFromMinimum();
        // 创建最小堆
        void create(T a[], int size);
        // 销毁最小堆
        void destroy();
};

template <class T>
MinHeap<T>::MinHeap()
{
}

template <class T>
MinHeap<T>::~MinHeap()
{
    destroy();
}

/*
 * 最小堆的向下调整算法
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被下调节点的起始位置(一般为0,表示从第1个开始)
 *     end   -- 截至范围(一般为数组中最后一个元素的索引)
 */
template <class T>
void MinHeap<T>::filterDown(int start, int end)
{
    int c = start;          // 当前(current)节点的位置
    int l = 2*c + 1;     // 左(left)孩子的位置
    HuffmanNode<T> tmp = mHeap[c];    // 当前(current)节点

    while(l <= end)
    {
        // "l"是左孩子,"l+1"是右孩子
        if(l < end && mHeap[l].key > mHeap[l+1].key)
            l++;        // 左右两孩子中选择较小者,即mHeap[l+1]
        if(tmp.key <= mHeap[l].key)
            break;        //调整结束
        else
        {
            mHeap[c] = mHeap[l];
            c = l;
            l = 2*l + 1;
        }
    }
    mHeap[c] = tmp;
}

/*
 * 最小堆的向上调整算法(从start开始向上直到0,调整堆)
 *
 * 注:数组实现的堆中,第N个节点的左孩子的索引值是(2N+1),右孩子的索引是(2N+2)。
 *
 * 参数说明:
 *     start -- 被上调节点的起始位置(一般为数组中最后一个元素的索引)
 */
template <class T>
void MinHeap<T>::filterUp(int start)
{
    int c = start;            // 当前节点(current)的位置
    int p = (c-1)/2;        // 父(parent)结点的位置
    HuffmanNode<T> tmp = mHeap[c];        // 当前节点(current)

    while(c > 0)
    {
        if(mHeap[p].key <= tmp.key)
            break;
        else
        {
            mHeap[c] = mHeap[p];
            c = p;
            p = (p-1)/2;
        }
    }
    mHeap[c] = tmp;
}

/*
 * 将node的全部数据拷贝给"最小堆的指定节点"
 *
 * 返回值:
 *     0,表示成功
 *    -1,表示失败
 */
template <class T>
int MinHeap<T>::copyOf(HuffmanNode<T> *node)
{
    // 如果"堆"已满,则返回
    if(mSize == mCapacity)
        return -1;

    mHeap[mSize] = *node;   // 将"node的数据"全部复制到"数组末尾"
    filterUp(mSize);        // 向上调整堆
    mSize++;                // 堆的实际容量+1

    return 0;
}

/*
 * 交换两个HuffmanNode节点的全部数据
 */
template <class T>
void MinHeap<T>::swapNode(int i, int j)
{
    HuffmanNode<T> tmp = mHeap[i];
    mHeap[i] = mHeap[j];
    mHeap[j] = tmp;
}

/*
 * 新建一个节点,并将最小堆中最小节点的数据复制给该节点。
 * 然后除最小节点之外的数据重新构造成最小堆。
 *
 * 返回值:
 *     失败返回NULL。
 */
template <class T>
HuffmanNode<T>* MinHeap<T>::dumpFromMinimum()
{
    // 如果"堆"已空,则返回
    if(mSize == 0)
        return NULL;

    HuffmanNode<T> *node;
    if((node = new HuffmanNode<T>()) == NULL)
        return NULL;

    // 将"最小节点的全部数据"复制给node
    *node = mHeap[0];

    swapNode(0, mSize-1);                // 交换"最小节点"和"最后一个节点"
    filterDown(0, mSize-2);    // 将mHeap[0...mSize-2]构造成一个最小堆
    mSize--;                        

    return node;
}

/*
 * 创建最小堆
 *
 * 参数说明:
 *     a -- 数据所在的数组
 *     size -- 数组大小
 */
template <class T>
void MinHeap<T>::create(T a[], int size)
{
    int i;

    // 创建最小堆所对应的数组
    mSize = size;
    mCapacity = size;
    mHeap = new HuffmanNode<T>[size];

    // 初始化数组
    for(i=0; i<size; i++)
    {
        mHeap[i].key = a[i];
        mHeap[i].parent = mHeap[i].left = mHeap[i].right = NULL;
    }

    // 从(size/2-1) --> 0逐次遍历。遍历之后,得到的数组实际上是一个最小堆。
    for (i = size / 2 - 1; i >= 0; i--)
        filterDown(i, size-1);
}

// 销毁最小堆
template <class T>
void MinHeap<T>::destroy()
{
    mSize = 0;
    mCapacity = 0;
    delete[] mHeap;
    mHeap = NULL;
}
#endif

4.哈夫曼树的测试文件(HuffmanTest.cpp)

/**
 * Huffman树测试程序
 *
 * @author skywang
 * @date 2014/03/25
 */

#include <iostream>
#include "Huffman.h"
using namespace std;

int main()
{
    int a[]= {5,6,8,7,15};
    int i, ilen = sizeof(a) / (sizeof(a[0])) ;
    Huffman<int>* tree=new Huffman<int>();

    cout << "== 添加数组: ";
    for(i=0; i<ilen; i++)
        cout << a[i] <<" ";

    tree->create(a, ilen);

    cout << "\n== 前序遍历: ";
    tree->preOrder();

    cout << "\n== 中序遍历: ";
    tree->inOrder();

    cout << "\n== 后序遍历: ";
    tree->postOrder();
    cout << endl;

    cout << "== 树的详细信息: " << endl;
    tree->print();

    // 销毁二叉树
    tree->destroy();

    return 0;
}

本文来自http://www.cnblogs.com/skywang12345/p/3706821.html

原文地址:https://www.cnblogs.com/msymm/p/9756298.html

时间: 2024-11-06 11:33:05

哈夫曼树——c++的相关文章

由二叉树构造赫夫曼树

赫夫曼树: 假设有n个权值{w1,w2,w3....},试构造一棵具有n个叶子节点的二叉树,每个叶子节点带权为wi,则其中带权路径长度最小的二叉树称为最优二叉树或者叫赫夫曼树. 构造赫夫曼树: 假设有n个权值,则构造出的赫夫曼树有n个叶子节点,n个权值分别设置为w1,w2,....wn,则赫夫曼树的构造规则为: 1.将w1,w2...看成是有n棵树的森林: 2.在森林中选择两个根节点的权值最小的树合并,作为一棵新树的左右子树,且新树的根节点权值为其左右子树根节点权值之和: 3.从森林中删除选取的

php 二叉树 与赫夫曼树

在学习图之前,中间休息了两天,感觉二叉树需要消化一下.所以中间去温习了下sql,推荐一本工具书<程序员的SQL金典>看名字不像一本好书,但是作为一个不错的SQL工具书还是可以小小备忘一下.涵盖内容不详细但是挺广,覆盖多种主流数据库 言归正传,以前知道折半查找,二叉树的概念也是感觉挺有意思,二叉树的实现有一个案例很不错,代码如下 class BiNode{ public $data; public $lchild; public $rchild; public function __constr

哈夫曼树与哈夫曼编码

哈夫曼树与哈夫曼编码 术语: i)路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径. 路径中分支的数目称为路径长度.若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1. ii)结点的权及带权路径长度 若对树中的每个结点赋给一个有着某种含义的数值,则这个数值称为该结点的权. 结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积. iii)树的带权路径长度 树的带权路径长度:所有叶子结点的带权路径长度之和,记为WPL. 先了解一下

数据结构之哈夫曼树

#include <iostream> #include <iomanip> #include <string> using namespace std; typedef struct { string name; int weight; int parent, lchild, rchild; int visited; //设置visited选项来表示每次查找最小权值后的删除,0代表未删除,1表示删除 }HTNode,*HuffmanTree; int Min(Huff

Huffman tree(赫夫曼树、霍夫曼树、哈夫曼树、最优二叉树)

flyfish 2015-8-1 Huffman tree因为翻译不同所以有其他的名字 赫夫曼树.霍夫曼树.哈夫曼树 定义引用自严蔚敏<数据结构> 路径 从树中一个结点到另一个结点之间的分支构成两个结点之间的路径. 路径长度 路径上的分支数目称作路径长度. 树的路径长度 树的路径长度就是从根节点到每一结点的路径长度之和. 结点的带权路径长度 结点的带权路径长度就是从该结点到根节点之间的路径长度与结点上权的乘积. 树的带权路径长度 树的带权路径长度就是树中所有叶子结点的带权路径长度之和,通常记做

数据结构之哈夫曼树(java实现)-(五)

所谓哈夫曼树就是要求最小加权路径长度,这是什么意思呢?简而言之,就是要所有的节点对应的路径长度(高度-1)乘以该节点的权值,然后保证这些结果之和最小. 哈夫曼树最常用的应用就是解决编码问题.一般我们用的ASCII是固定长度的编码,对于那些常用的字符,使用很长的长度就显得略为浪费空间了. 下面以一个实例来构建一颗哈夫曼编码树. 设字符集S={A,B,C,D,E,F},字符出现的频率W={2,3,5,7,9,12},对字符集进行哈夫曼编码 (1)以频率为树的节点值,构建6个树节点,保存在一个数据集合

《数据结构复习笔记》--哈夫曼树,哈夫曼编码

先来了解一下哈夫曼树. 带权路径长度(WPL):设二叉树有n个叶子结点,每个叶子结点带有权值 wk,从根结点到每个叶子结点的长度为 lk,则每个叶子结点的带权路径长度之和就是: 最优二叉树或哈夫曼树: WPL最小的二叉树. [例]有五个叶子结点,它们的权值为{1,2,3,4,5},用此权值序列可以构造出形状不同的多个二叉树. 其中结果wpl最小值的是:33=(1+2)*3+(3)*2+(4+5)*2: 哈夫曼树的构造: 每次把权值最小的两棵二叉树合并, 代码: typedef struct Tr

哈夫曼树学习笔记

既然我们要学习赫夫曼树,那么我们首先就要知道什么叫赫夫曼树. 那么什么叫赫夫曼树呢? 一.什么叫赫夫曼树? 书上说:“赫夫曼(Huffman)树又称最优树,是一类带权路径长度最短的树,但是我们仅学习最优二叉树.” 看到这个还是不明白什么意思,因此在学习之前我们要结合这个图了解几个基本概念. 路    径:由一结点到另一结点间的分支所构成.如:a->b a->b->e 路径长度:路径上的分支数目,如:a→e的路径长度=2  a->c的路径长度=1 树的路径长度:从树根到每一结点的路径

[转]哈夫曼树

  一.哈夫曼树的概念和定义 什么是哈夫曼树? 让我们先举一个例子. 判定树:         在很多问题的处理过程中,需要进行大量的条件判断,这些判断结构的设计直接影响着程序的执行效率.例如,编制一个程序,将百分制转换成五个等级输出.大家可能认为这个程序很简单,并且很快就可以用下列形式编写出来: if(score<60) cout<<"Bad"<<endl; else if(score<70) cout<<"Pass"

hdu5884 Sort(二分+k叉哈夫曼树)

题目链接:hdu5884 Sort 题意:n个有序序列的归并排序.每次可以选择不超过k个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问k最小是多少. 题解:先二分k,然后在k给定的情况下,构造k叉哈夫曼树.O(nlogn)的做法:先对所有数排序,另外一个队列维护合并后的值,取值时从两个序列前端取小的即可. 注:如果(n-1)%(k-1)!=0,那么就要增加(k-1-(n-1)%(k-1))个权值为0的叶子节点作虚拟点. 1 #include<cstdio> 2 #inc