新手入门大数据,理清学习路线是关键

学习大数据,首先我们要学习Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
Java:大家都知道Java的方向有JavaSE、JavaEE、JavaME,学习大数据要学习那个方向呢?
只需要学习Java的标准版JavaSE就可以了,像Servlet、JSP、Tomcat、Struts、Spring、Hibernate,Mybatis都是JavaEE方向的技术在大数据技术里用到的并不多,只需要了解就可以了,当然Java怎么连接数据库还是要知道的,像JDBC一定要掌握一下,有同学说Hibernate或Mybites也能连接数据库啊,为什么不学习一下,我这里不是说学这些不好,而是说学这些可能会用你很多时间,到最后工作中也不常用,我还没看到谁做大数据处理用到这两个东西的,当然你的精力很充足的话,可以学学Hibernate或Mybites的原理,不要只学API,这样可以增加你对Java操作数据库的理解,因为这两个技术的核心就是Java的反射加上JDBC的各种使用。

Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
?
我还是要推荐下我自己创建的大数据资料分享群142973723,这是大数据学习交流的地方,不管你是小白还是大牛,小编都欢迎,不定期分享干货,包括我整理的一份适合零基础学习大数据资料和入门教程。

学完基础,还需要学习哪些大数据技术,可以按我写的顺序学下去。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapReduce和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapReduce是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。YARN是体现Hadoop平台概念的重要组件有了它大数据生态体系的其它软件就能在hadoop上运行了,这样就能更好的利用HDFS大存储的优势和节省更多的资源比如我们就不用再单独建一个spark的集群了,让它直接跑在现有的hadoop yarn上面就可以了。其实把Hadoop的这些组件学明白你就能做大数据的处理了,只不过你现在还可能对"大数据"到底有多大还没有个太清楚的概念,听我的别纠结这个。等以后你工作了就会有很多场景遇到几十T/几百T大规模的数据,到时候你就不会觉得数据大真好,越大越有你头疼的。当然别怕处理这么大规模的数据,因为这是你的价值所在,让那些个搞Javaee的php的html5的和DBA的羡慕去吧。记住学到这里可以作为你学大数据的一个节点。

Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。

Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。

Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。

Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapReduce程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。

Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapReduce、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。

Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。

Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。

Spark:它是用来弥补基于MapReduce处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

原文地址:http://blog.51cto.com/14052410/2317232

时间: 2024-11-05 22:33:17

新手入门大数据,理清学习路线是关键的相关文章

新手入门大数据,这有一条最完整的学习路径

本文的目的是希望给所有大数据初学者规划一条比较清晰的学习路线,帮助它们开启大数据学习之旅.鉴于大数据领域内的技术绚丽繁复,每位大数据初学者都应该根据自己的实际情况制定专属的学习路径. 要说当下IT行业什么最火?ABC无出其右.所谓ABC者,AI + Big Data + Cloud也,即人工智能.大数据和云计算(云平台).每个领域目前都有行业领袖在引领前行,今天我们来讨论下大数据这个方向. 新手入门大数据,这有一条最完整的学习路径大数据概念 角色 以我的愚见,当下大数据行业有两类角色: 大数据工

大数据最佳学习路线总结

一,题记 要说当下IT行业什么最火?ABC无出其右.所谓ABC者,AI + Big Data + Cloud也,即人工智能.大数据和云计算(云平台).每个领域目前都有行业领袖在引领前行,今天我们来讨论下大数据Big Data这个方向. 二,大数据里面的角色 角色一:大数据工程 大数据工程需要解决数据的定义.收集.计算与保存的工作,因此大数据工程师们在设计和部署这样的系统时首要考虑的是数据高可用的问题,即大数据工程系统需要实时地为下游业务系统或分析系统提供数据服务: 角色二:大数据分析 大数据分析

大数据技术学习路线,该怎么学?

如果你看完有信心能坚持学习的话,那就当下开始行动吧! 一.大数据技术基础 1.linux操作基础 linux系统简介与安装linux常用命令–文件操作linux常用命令–用户管理与权限linux常用命令–系统管理linux常用命令–免密登陆配置与网络管理linux上常用软件安装linux本地yum源配置及yum软件安装linux防火墙配置linux高级文本处理命令cut.sed.awklinux定时任务crontab2.shell编程 shell编程–基本语法shell编程–流程控制shell编

大数据开发学习路线整理

参考博客:做了五年大数据开发工程师总结的的大数据学习路线 大数据的4V特征: 1.        数据量大,TB->PB 2.        数据类型繁多,结构化.非结构化文本.日志.视频.图片.地理位置等: 3.        商业价值高,但是这种价值需要在海量数据之上,通过数据分析与机器学习更快速的挖掘出来: 4.        处理时效性高,海量数据的处理需求不再局限在离线计算当中. 常见的大数据的开源框架: l  文件存储:Hadoop HDFS.Tachyon.KFS l  离线计算:

大数据经典学习路线(及供参考)

http://blog.csdn.net/yuexianchang/article/details/52468291 1.Linux基础和分布式集群技术 学完此阶段可掌握的核心能力: 熟练使用linux,熟练安装Linux上的软件,了解熟悉负载均衡.高可靠等集群相关概念,搭建互联网高并发.高可靠的服务架构: 学完此阶段可解决的现实问题: 搭建负载均衡.高可靠的服务器集群,可以增大网站的并发访问量,保证服务不间断地对外服务: 学完此阶段可拥有的市场价值: 具备初级程序员必要具备的Linux服务器运

掌握这套大数据开发学习路线,从小白到精通没有问题!

很多人都知道大数据很火,就业很好,薪资很高,想往大数据方向发展.但该学哪些技术,学习路线是什么样的呢?用不用参加大数据培训呢?如果自己很迷茫.关注作者:需要更好的学习大数据,可以加我QQ群 首先先问自己几个问题,你的专业是什么,你擅长什么,对于计算机/软件,你的兴趣是什么?是计算机专业,对操作系统.硬件.网络.服务器感兴趣?是软件专业,对软件开发.编程.写代码感兴趣?还是数学.统计学专业,对数据和数字特别感兴趣. 其实这就是想告诉你的大数据的三个发展方向,平台搭建/优化/运维/监控.大数据开发/

大数据技术学习路线,有信心能学好的朋友,就开始吧

如果你看完有信心能坚持学习的话,那就当下开始行动吧! 一.大数据技术基础 1.linux操作基础 linux系统简介与安装 linux常用命令–文件操作 linux常用命令–用户管理与权限 linux常用命令–系统管理 linux常用命令–免密登陆配置与网络管理 linux上常用软件安装 linux本地yum源配置及yum软件安装 linux防火墙配置 linux高级文本处理命令cut.sed.awk linux定时任务crontab 2.shell编程 shell编程–基本语法 shell编程

大数据最佳学习路线

要说当下IT行业什么最火?ABC无出其右.所谓ABC者,AI + Big Data + Cloud也,即人工智能.大数据和云计算(云平台).每个领域目前都有行业领袖在引领前行,今天我们来讨论下大数据Big Data这个方向. 二,大数据里面的角色 角色一:大数据工程 大数据工程需要解决数据的定义.收集.计算与保存的工作,因此大数据工程师们在设计和部署这样的系统时首要考虑的是数据高可用的问题,即大数据工程系统需要实时地为下游业务系统或分析系统提供数据服务; 角色二:大数据分析 大数据分析角色定位于

Hadoop基础与电商行为日志分析 新手入门大数据

第1章 大数据概述本章将从故事说起,让大家明白大数据是与我们的生活息息相关的,并不是遥不可及的,还会介绍大数据的特性,以及大数据对我们带来的技术变革,大数据处理过程中涉及到的技术以及大数据典型应用. 第2章 初识Hadoop本章节将带领大家认识Hadoop以及Hadoop生态系统.Hadoop的发展史.Hadoop的优势.Hadoop的三个核心组件.Hadoop发行版的选择,为后续深入讲解Hadoop打下坚实的基础. 第3章 分布式文件系统HDFS本章将从Hadoop的设计目标.架构及文件系统命