前几节里,通过几个案例,分析了各种常见的 CPU 性能问题。通过这些,相信对 CPU 的性能分析已经不再陌生和恐惧,起码有了基本的思路,也了解了不少 CPU 性能的分析工 具。
不过,我猜你可能也碰到了一个我曾有过的困惑: CPU 的性能指标那么多,CPU 性能分析工具 也是一抓一大把,如果离开专栏,换成实际的工作场景,我又该观察什么指标、选择哪个性能工 具呢?
不要担心,今天我就以多年的性能优化经验,给你总结出一个“又快又准”的瓶颈定位套路,告 诉你在不同场景下,指标工具怎么选,性能瓶颈怎么找。
CPU 性能指标
我们先来回顾下,描述 CPU 的性能指标都有哪些。你可以自己先找张纸,凭着记忆写一写;或 者打开前面的文章,自己总结一下。
首先,最容易想到的应该是 CPU 使用率,这也是实际环境中最常见的一个性能指标。
CPU 使用率描述了非空闲时间占总 CPU 时间的百分比,根据 CPU 上运行任务的不同,又被分 为用户 CPU、系统 CPU、等待 I/O CPU、软中断和硬中断等。
- 用户 CPU 使用率,包括用户态 CPU 使用率(user)和低优先级用户态 CPU 使用率 (nice),表示 CPU 在用户态运行的时间百分比。用户 CPU 使用率高,通常说明有应用程 序比较繁忙。
- 系统 CPU 使用率,表示 CPU 在内核态运行的时间百分比(不包括中断)。系统 CPU 使用 率高,说明内核比较繁忙。
- 等待 I/O 的 CPU 使用率,通常也称为 iowait,表示等待 I/O 的时间百分比。iowait 高,通 常说明系统与硬件设备的 I/O 交互时间比较长。
- 软中断和硬中断的 CPU 使用率,分别表示内核调用软中断处理程序、硬中断处理程序的时间 百分比。它们的使用率高,通常说明系统发生了大量的中断。
- 除了上面这些,还有在虚拟化环境中会用到的窃取 CPU 使用率(steal)和客户 CPU 使用率 (guest),分别表示被其他虚拟机占用的 CPU 时间百分比,和运行客户虚拟机的 CPU 时 间百分比。
第二个比较容易想到的,应该是平均负载(Load Average),也就是系统的平均活跃进程数。 它反应了系统的整体负载情况,主要包括三个数值,分别指过去 1 分钟、过去 5 分钟和过去 15 分钟的平均负载。
理想情况下,平均负载等于逻辑 CPU 个数,这表示每个 CPU 都恰好被充分利用。如果平均负 载大于逻辑 CPU 个数,就表示负载比较重了。
第三个,也是在专栏学习前你估计不太会注意到的,进程上下文切换,包括:
- 无法获取资源而导致的自愿上下文切换;
- 被系统强制调度导致的非自愿上下文切换。
上下文切换,本身是保证 Linux 正常运行的一项核心功能。但过多的上下文切换,会将原本运 行进程的 CPU 时间,消耗在寄存器、内核栈以及虚拟内存等数据的保存和恢复上,缩短进程真 正运行的时间,成为性能瓶颈。
除了上面几种,还有一个指标,CPU 缓存的命中率。由于 CPU 发展的速度远快于内存的发展, CPU 的处理速度就比内存的访问速度快得多。这样,CPU 在访问内存的时候,免不了要等待内 存的响应。为了协调这两者巨大的性能差距,CPU 缓存(通常是多级缓存)就出现了。
就像上面这张图显示的,CPU 缓存的速度介于 CPU 和内存之间,缓存的是热点的内存数据。根 据不断增长的热点数据,这些缓存按照大小不同分为 L1、L2、L3 等三级缓存,其中 L1 和 L2 常用在单核中, L3 则用在多核中。
从 L1 到 L3,三级缓存的大小依次增大,相应的,性能依次降低(当然比内存还是好得多)。 而它们的命中率,衡量的是 CPU 缓存的复用情况,命中率越高,则表示性能越好。
这些指标都很有用,需要我们熟练掌握,所以我总结成了一张图,帮你分类和记忆。你可以保存 打印下来,随时查看复习,也可以当成 CPU 性能分析的“指标筛选”清单。
性能工具
掌握了 CPU 的性能指标,我们还需要知道,怎样去获取这些指标,也就是工具的使用。
你还记得前面案例都用了哪些工具吗?这里我们也一起回顾一下 CPU 性能工具。
首先,平均负载的案例。我们先用 uptime, 查看了系统的平均负载;而在平均负载升高后,又 用 mpstat 和 pidstat ,分别观察了每个 CPU 和每个进程 CPU 的使用情况,进而找出了导致平 均负载升高的进程,也就是我们的压测工具 stress。
第二个,上下文切换的案例。我们先用 vmstat ,查看了系统的上下文切换次数和中断次数;然 后通过 pidstat ,观察了进程的自愿上下文切换和非自愿上下文切换情况;最后通过 pidstat , 观察了线程的上下文切换情况,找出了上下文切换次数增多的根源,也就是我们的基准测试工具 sysbench。
第三个,进程 CPU 使用率升高的案例。我们先用 top ,查看了系统和进程的 CPU 使用情况, 发现 CPU 使用率升高的进程是 php-fpm;再用 perf top ,观察 php-fpm 的调用链,最终找 出 CPU 升高的根源,也就是库函数 sqrt() 。
第四个,系统的 CPU 使用率升高的案例。我们先用 top 观察到了系统 CPU 升高,但通过 top 和 pidstat ,却找不出高 CPU 使用率的进程。于是,我们重新审视 top 的输出,又从 CPU 使 用率不高但处于 Running 状态的进程入手,找出了可疑之处,最终通过 perf record 和 perf report ,发现原来是短时进程在捣鬼。
另外,对于短时进程,我还介绍了一个专门的工具 execsnoop,它可以实时监控进程调用的外 部命令。
第五个,不可中断进程和僵尸进程的案例。我们先用 top 观察到了 iowait 升高的问题,并发现 了大量的不可中断进程和僵尸进程;接着我们用 dstat 发现是这是由磁盘读导致的,于是又通过 pidstat 找出了相关的进程。但我们用 strace 查看进程系统调用却失败了,最终还是用 perf 分 析进程调用链,才发现根源在于磁盘直接 I/O 。
最后一个,软中断的案例。我们通过 top 观察到,系统的软中断 CPU 使用率升高;接着查看 /proc/softirqs, 找到了几种变化速率较快的软中断;然后通过 sar 命令,发现是网络小包的问 题,最后再用 tcpdump ,找出网络帧的类型和来源,确定是一个 SYN FLOOD 攻击导致的。
到这里,估计你已经晕了吧,原来短短几个案例,我们已经用过十几种 CPU 性能工具了,而且 每种工具的适用场景还不同呢!这么多的工具要怎么区分呢?在实际的性能分析中,又该怎么选 择呢?
我的经验是,从两个不同的维度来理解它们,做到活学活用。
活学活用,把性能指标和性能工具联系起来
第一个维度,从 CPU 的性能指标出发。也就是说,当你要查看某个性能指标时,要清楚知道哪 些工具可以做到。
根据不同的性能指标,对提供指标的性能工具进行分类和理解。这样,在实际排查性能问题时, 你就可以清楚知道,什么工具可以提供你想要的指标,而不是毫无根据地挨个尝试,撞运气。
其实,我在前面的案例中已经多次用到了这个思路。比如用 top 发现了软中断 CPU 使用率高 后,下一步自然就想知道具体的软中断类型。那在哪里可以观察各类软中断的运行情况呢?当然 是 proc 文件系统中的 /proc/softirqs 这个文件。
紧接着,比如说,我们找到的软中断类型是网络接收,那就要继续往网络接收方向思考。系统的 网络接收情况是什么样的?什么工具可以查到网络接收情况呢?在我们案例中,用的正是虽然你不需要把所有工具背下来,但如果能理解每个指标对应的工具的特性,一定更高效、更灵 活地使用。这里,我把提供 CPU 性能指标的工具做成了一个表格,方便你梳理关系和理解记 忆,当然,你也可以当成一个“指标工具”指南来使用。
下面,我们再来看第二个维度。
第二个维度,从工具出发。也就是当你已经安装了某个工具后,要知道这个工具能提供哪些指 标。
这在实际环境特别是生产环境中也是非常重要的,因为很多情况下,你并没有权限安装新的工具 包,只能最大化地利用好系统中已经安装好的工具,这就需要你对它们有足够的了解。
具体到每个工具的使用方法,一般都支持丰富的配置选项。不过不用担心,这些配置选项并不用 背下来。你只要知道有哪些工具、以及这些工具的基本功能是什么就够了。真正要用到的时候, 通过 man 命令,查它们的使用手册就可以了。
同样的,我也将这些常用工具汇总成了一个表格,方便你区分和理解,自然,你也可以当成一 个“工具指标”指南使用,需要时查表即可。
如何迅速分析 CPU 的性能瓶颈
我相信到这一步,你对 CPU 的性能指标已经非常熟悉,也清楚每种性能指标分别能用什么工具 来获取。
那是不是说,每次碰到 CPU 的性能问题,你都要把上面这些工具全跑一遍,然后再把所有的 CPU 性能指标全分析一遍呢?
你估计觉得这种简单查找的方式,就像是在傻找。不过,别笑话,因为最早的时候我就是这么做 的。把所有的指标都查出来再统一分析,当然是可以的,也很可能找到系统的潜在瓶颈。
但是这种方法的效率真的太低了!耗时耗力不说,在庞大的指标体系面前,你一不小心可能就忽 略了某个细节,导致白干一场。我就吃过好多次这样的苦。
所以,在实际生产环境中,我们通常都希望尽可能快地定位系统的瓶颈,然后尽可能快地优化性 能,也就是要又快又准地解决性能问题。
那有没有什么方法,可以又快又准找出系统瓶颈呢?答案是肯定的。
虽然 CPU 的性能指标比较多,但要知道,既然都是描述系统的 CPU 性能,它们就不会是完全 孤立的,很多指标间都有一定的关联。想弄清楚性能指标的关联性,就要通晓每种性能指标的工 作原理。这也是为什么我在介绍每个性能指标时,都要穿插讲解相关的系统原理,希望你能记住 这一点。
举个例子,用户 CPU 使用率高,我们应该去排查进程的用户态而不是内核态。因为用户 CPU 使用率反映的就是用户态的 CPU 使用情况,而内核态的 CPU 使用情况只会反映到系统 CPU 使 用率上。
你看,有这样的基本认识,我们就可以缩小排查的范围,省时省力。
所以,为了缩小排查范围,我通常会先运行几个支持指标较多的工具,如 top、vmstat 和 pidstat 。为什么是这三个工具呢?仔细看看下面这张图,你就清楚了。
这张图里,我列出了 top、vmstat 和 pidstat 分别提供的重要的 CPU 指标,并用虚线表示关联 关系,对应出了性能分析下一步的方向。
通过这张图你可以发现,这三个命令,几乎包含了所有重要的 CPU 性能指标,比如:
- 从 top 的输出可以得到各种 CPU 使用率以及僵尸进程和平均负载等信息。
- 从 vmstat 的输出可以得到上下文切换次数、中断次数、运行状态和不可中断状态的进程 数。
- 从 pidstat 的输出可以得到进程的用户 CPU 使用率、系统 CPU 使用率、以及自愿上下文切 换和非自愿上下文切换情况。
另外,这三个工具输出的很多指标是相互关联的,所以,我也用虚线表示了它们的关联关系,举 几个例子你可能会更容易理解。
第一个例子,pidstat 输出的进程用户 CPU 使用率升高,会导致 top 输出的用户 CPU 使用率 升高。所以,当发现 top 输出的用户 CPU 使用率有问题时,可以跟 pidstat 的输出做对比,观 察是否是某个进程导致的问题。
而找出导致性能问题的进程后,就要用进程分析工具来分析进程的行为,比如使用 strace 分析
系统调用情况,以及使用 perf 分析调用链中各级函数的执行情况。
第二个例子,top 输出的平均负载升高,可以跟 vmstat 输出的运行状态和不可中断状态的进程 数做对比,观察是哪种进程导致的负载升高。
- 如果是不可中断进程数增多了,那么就需要做 I/O 的分析,也就是用 dstat 或 sar 等工具, 进一步分析 I/O 的情况。
- 如果是运行状态进程数增多了,那就需要回到 top 和 pidstat,找出这些处于运行状态的到 底是什么进程,然后再用进程分析工具,做进一步分析。
最后一个例子,当发现 top 输出的软中断 CPU 使用率升高时,可以查看 /proc/softirqs 文件中 各种类型软中断的变化情况,确定到底是哪种软中断出的问题。比如,发现是网络接收中断导致 的问题,那就可以继续用网络分析工具 sar 和 tcpdump 来分析。
注意,我在这个图中只列出了最核心的几个性能工具,并没有列出所有。这么做,一方面是不想 用大量的工具列表吓到你。在学习之初就接触所有或核心或小众的工具,不见得是好事。另一方 面,是希望你能先把重心放在核心工具上,毕竟熟练掌握它们,就可以解决大多数问题。
所以,你可以保存下这张图,作为 CPU 性能分析的思路图谱。从最核心的这几个工具开始,通 过我提供的那些案例,自己在真实环境里实践,拿下它们。 小结 今天,我带你回忆了常见的 CPU 性能指标,梳理了常见的 CPU 性能观测工具,最后还总结了 快速分析 CPU 性能问题的思路。 虽然 CPU 的性能指标很多,相应的性能分析工具也很多,但熟悉了各种指标的含义之后,你就 会发现它们其实都有一定的关联。顺着这个思路,掌握常用的分析套路并不难。
原文地址:https://www.cnblogs.com/LHXW/p/10124213.html