Apache Flink 数据流编程模型

抽象等级(Levels of Abstraction)

Flink提供不同级别的抽象来开发流/批处理应用程序。

Statefule Stream Processing: 是最低级别(底层)的抽象,只提供有状态的流。它通过ProcessFunction嵌入到DataStream API之中。它使得用户可以自由处理来源于一个或者多个流的事件

DataStream/DataSet API: 在我们的实际工作中,大多数的应用程序是不需要上文所描述的低级别(底层)抽象,而是相对于诸如DataStream API(有界/无界流)和DataSet API(有界数据集)的Core API进行编程。这些API提供了用于数据处理的通用模块,如各种指定的transformations, joins, aggregations, windows, state等。在API中,这些处理的数据类型都是一个具体的实体类(class)。

底层的Process Function与DataStream API集成在一起,可以仅对一些操作进行底层抽象。

Table API: 是围绕着table的申明性DSL,可以被动态的改变(当其表示流时)。Table API遵循(扩展)关系模型:表有一个模式链接(类似与在关系数据库中的表),API也提供了一些类似的操作:select, project, join, group-by, aggregate等。Table API程序申明定义了怎么做是规范的,而不是明确指定应该是什么样子的。虽然Table API可以通过各种类型的用户定义的函数进行扩展,但它比Core API表达的更少,但使用起来更简洁(少写代码)。另外,Table API程序也会通过一个优化器,在执行之前应用优化规则。

可以在表和DataStream / DataSet之间进行无缝转换,允许程序混合使用Table API和DataStream 和DataSet API。

Flink提供的最高级抽象是SQL。 这种抽象在语义和表现力方面与Table API类似,但是将程序表示为SQL查询表达式。在SQL抽象与Table API紧密地相互作用,另外,SQL查询可以在Table API中定义的表上执行。

程序和数据流(Programs and Dataflows)

Flink可以说是由流(streams)和转换(transformations)为基础构建的(请注意,Flink的DataSet API中使用的数据集也是内部的流 )。从概念上讲,流是数据记录(可能是永无止境的)流,而转换是将一个或多个流作为输入,并产生一个或多个输出流。

执行时,Flink程序被映射到由流和转换运算符组成的流式数据流。每个数据从一个或多个源(sources)开始,并在一个或者多个接收器(sinks)中结束。数据流类似于一个任意有向无环图(DAG)。尽管通过迭代构造允许特殊形式的循环,但是为了简单起见,我们姑且先忽视这种情况。

程序中的转换与数据流中的操作符通常是一一对应的。然而,有时候,一个转换可能由多个转换操作符组成。

信号源(sources)和接收器(sinks)记录在流式连接器批量连接器文档中。DataStream运算符DataSet转换中记录了转换。

并行数据流(Parallel Dataflows)

Flink中的程序本质上是并行和分布的。在执行过程中,一个流有一个或者多个流分区,每个运算符有一个或者多个子任务。操作符子任务彼此独立,并且在不同的线程中执行,并且可能在不同的机器或容器上执行。

操作符子任务的数量是该特定操作符的并行度。流的并行性总是由生产它的操作符决定。同一个程序的不同运算符可能有不同的并行级别。

流可以以一对一(One-to-one)或者重新分配(Redistributing)的模式在两个操作符之间传输:

One-to-one: 保留了元素的分区和顺序,如上图中source —>map。这意味着map运算符的subtask[1]将按照源运算符的subtask[1]所产生顺序相同。

Redistributing: 如上图所示,map和keyBy/window之间,以及keyBy/window和Sink之间重新分配流,将会改变流的分区。每个操作符子任务根据所选的转换将数据发送到不同的目标子任务。比如 keyBy()(其通过哈希重新分区),broadcast(), or rebalance() (其随机重新分区)。在重新分配 交换中,元素之间的排序只保存在每对发送和接收的子任务中(例如map() 的subtask[1] 和 keyBy /window的subtask [2])。所以在这个例子里,每个关键字中的排序都被保留下来,但是并行性确实造成了不同关键字汇总结果后顺序的非确定性。

有关配置和控制并行的细节可以在并行执行的文档中找到。

窗口(Windows)

聚合事件(如:sum,count,etc)在流上的工作方式与批处理中的不同。例如,我们不能够去统计流中的所有元素,因为流一般是无限的(无界的)。因而,流中的一些aggregate操作,是由Windows控制的,例如:计算过去五分钟或者最后100个元素的总和。

Windows可以是由时间驱动的(例如,每30秒)或者数据驱动(例如每100个元素)。这可以用来区分不同类型的Windows,例如:tumbling windows (no overlap), sliding windows (with overlap), and session windows (punctuated by a gap of inactivity).

更多的窗口示例可以在这篇博客文章中找到。更多细节在窗口文档

时间(Time)

当我们在流式编程中谈及时间时,可以参考不同的时间概念:

Event Time, 是事件创建的时间,通常用时间戳表示。Flink通过时间戳分配器来访问事件时间戳。

Ingestion time, 是事件进入Flink的时间,在源操作中每个记录都会获得源的当前时间作为时间戳,后续基于时间的操作(如: time window)会依赖这个时间戳

Processing Time, 是指each operator 执行程序时对应的物理机的系统时间

有关如何处理时间的更多细节,请参阅event time 文档

有状态的操作(Stateful Operations)

尽管数据流中很多操作看起来像一个单独的事件,但是一些操作会跨越几个事件记下相关的的信息(比如像window operators)。这种操作被称为有状态的(stateful)。

这种有状态的操作,被保存在一种key/value的存储结构之中。状态与有状态操作符读取的流严格分区和分配。只有在keyed()函数之后才能访问key/value状态。并且仅限于与当前事件的键相关的值。流和状态的keys的匹配保证了所有状态更新都是本地操作,保证了一致性,所以不需要事务的开销。这种匹配还允许flink重新分配状态,并公开的调整分区。

有关更多信息,请参阅有关状态的文档

检查点容错(Checkpoints for Fault Tolerance)

Flink使用流重播(stream replay)检查点(checkpointing) 的组合来实现容错。检查点与每个输入流中的特定点以及每个操作元的相应状态有关。数据流可以从检查点恢复,同时保持一致性(exactly-once processing语义),方法是恢复operators 的状态并从检查点重放事件。

检查点间隔是在执行恢复时间(需要被重放的事件的数量)的情况下折衷的容错开销手段。

容错内部的描述提供了有关Flink如何管理检查点和相关主题的更多信息。有关启用和配置检查点的详细信息位于检查点API文档中。

批处理流(Batch on Streaming)

Flink执行批处理程序作为流程序的特殊情况,它是有限的(元素是有限的)。ADataSet 在内部视为数据流。因此,上述概念同样适用于批处理程序,就像适用于流式处理程序一样,但有一点例外:

  • 批处理程序的容错不使用检查点。通过完全重放流来恢复。这是可能的,因为输入是有限的。这将成本更多推向recovery,但是使常规地处理更便宜,因为它避免了检查点。
  • DataSet API中的有状态操作使用简化的内存/外核数据结构,而不是键/值索引。
  • DataSet API引入了特殊的同步(超级)iterations,这只能在有界的流上进行。有关详细信息,请查看iterations文档

原文地址:https://www.cnblogs.com/bigdata1024/p/10217015.html

时间: 2024-11-13 08:49:17

Apache Flink 数据流编程模型的相关文章

Apache Flink数据流的Fault Tolerance机制

简介 Apache Flink提供了一个失败恢复机制来使得数据流应用可以持续得恢复状态.这个机制可以保证即使线上环境的失败,程序的状态也将能保证数据流达到exactly once的一致性.注意这里也可以选择降级到保证at least once的一致性级别. 失败恢复机制持续地构建分布式流式数据的快照.对于那些只有少量状态的流处理应用,这些快照都是非常轻量级的并且可以以非常频繁的频率来构建快照而不需要太多地考虑性能问题.而流应用的状态被存储在一个可配置的持久化存储(比如master节点或者HDFS

Apache Flink 整体介绍

前言 Flink 是一种流式计算框架,为什么我会接触到 Flink 呢?因为我目前在负责的是监控平台的告警部分,负责采集到的监控数据会直接往 kafka 里塞,然后告警这边需要从 kafka topic 里面实时读取到监控数据,并将读取到的监控数据做一些 聚合/转换/计算 等操作,然后将计算后的结果与告警规则的阈值进行比较,然后做出相应的告警措施(钉钉群.邮件.短信.电话等).画了个简单的图如下: 目前告警这块的架构是这样的结构,刚进公司那会的时候,架构是所有的监控数据直接存在 ElasticS

Apache Beam WordCount编程实战及源码解读

概述:Apache Beam WordCount编程实战及源码解读,并通过intellij IDEA和terminal两种方式调试运行WordCount程序,Apache Beam对大数据的批处理和流处理,提供一套先进的统一的编程模型,并可以运行大数据处理引擎上.完整项目Github源码 负责公司大数据处理相关架构,但是具有多样性,极大的增加了开发成本,急需统一编程处理,Apache Beam,一处编程,处处运行,故将折腾成果分享出来. 1.Apache Beam编程实战–前言,Apache B

Apache Flink

Flink 剖析 1.概述 在如今数据爆炸的时代,企业的数据量与日俱增,大数据产品层出不穷.今天给大家分享一款产品—— Apache Flink,目前,已是 Apache 顶级项目之一.那么,接下来,笔者为大家介绍Flink 的相关内容. 2.内容 2.1 What's Flink Apache Flink 是一个面向分布式数据流处理和批量数据处理的开源计算平台,它能够基于同一个Flink运行时(Flink Runtime),提供支持流处理和批处理两种类型应用的功能.现有的开源计算方案,会把流处

通过 GOOGLE 大数据计算平台演进理解 APACHE FLINK 前世今生

一.背景 2019年1月,伴随 APACHE FLINK 母公司 Data Artisans 被 收购 ,FLINK 毫无争议成为继 SPARK 之后的新一代大数据计算平台,本文希望通过 GOOGLE 计算平台演进来更好的理解 FLINK. 二.GOOGLE 大数据计算平台演进 GOOGLE 作为搜索引擎的顶级公司,需要处理海量数据,其大数据计算平台的演进是行业的风向标:本文通过 GOOGLE 在该领域发表的论文进行剖析,希望从中提取一些演进的主线. 2.1 分布式的三篇经典 2003年,[Th

MapReduce编程模型及其在Hadoop上的实现

转自:https://www.zybuluo.com/frank-shaw/note/206604 MapReduce基本过程 关于MapReduce中数据流的传输过程,下图是一个经典演示:  关于上图,可以做出以下逐步分析: 输入数据(待处理)首先会被切割分片,每一个分片都会复制多份到HDFS中.上图默认的是分片已经存在于HDFS中. Hadoop会在存储有输入数据分片(HDFS中的数据)的节点上运行map任务,可以获得最佳性能(数据TaskTracker优化,节省带宽). 在运行完map任务

Storm集群组件和编程模型

 Storm工作原理: Storm是一个开源的分布式实时计算系统,常被称为流式计算框架.什么是流式计算呢?通俗来讲,流式计算顾名思义:数据流源源不断的来,一边来,一边计算结果,再进入下一个流. 比如一般金融系统一直不断的执行,金融交易.用户全部行为都记录进日志里,日志分析出站点运维.猎户信息.海量数据使得单节点处理只是来.所以就用到分布式计算机型,storm 是当中的典型代表之中的一个,一般应用场景是:中间使用一个消息队列系统如kafka,先将消息缓存起来,storm 中有非常多的节点,分布

MapReduce分布式编程模型

hdfs的副本的配置修改hdfs-site.xml文件<property><name>dfs.namenode.secondary.http-address</name><value>hd-02:50090</value></property>需要同步到其它机器:scp hdfs-site.xml hd-02:$PWDhadoop启动方式1)启动hdfs集群$ start-dfs.sh2)启动yarn集群$ start-yarn.sh

Apache Flink 零基础入门(一):基础概念解析

作者:陈守元.戴资力 一.Apache Flink 的定义.架构及原理 Apache Flink 是一个分布式大数据处理引擎,可对有限数据流和无限数据流进行有状态或无状态的计算,能够部署在各种集群环境,对各种规模大小的数据进行快速计算. 1. Flink Application 了解 Flink 应用开发需要先理解 Flink 的 Streams.State.Time 等基础处理语义以及 Flink 兼顾灵活性和方便性的多层次 API. Streams:流,分为有限数据流与无限数据流,unbou