朴素贝叶斯算法小结

朴素贝叶斯naive bayes是直接生成方法,也就是直接找出特征输出Y和特征X的联合分布P(X,Y)P(X,Y),然后用P(Y|X)=P(X,Y)/P(X)P(Y|X)=P(X,Y)/P(X)得出。

数学基础:

1.

最大似然估计

原文地址:https://www.cnblogs.com/guodavid/p/10169867.html

时间: 2024-10-16 22:20:00

朴素贝叶斯算法小结的相关文章

挖掘算法(1)朴素贝叶斯算法

原文:http://www.blogchong.com/post/NaiveBayes.html 1 文档说明 该文档为朴素贝叶斯算法的介绍和分析文档,并且结合应用实例进行了详细的讲解. 其实朴素贝叶斯的概念以及流程都被写烂了,之所以写这些是方便做个整理,记录备忘.而实例部分进行了详细的描述,网络上该实例比较简单,没有过程. 至于最后部分,则是对朴素贝叶斯的一个扩展了,当然只是简单的描述了一下过程,其中涉及到的中文分词以及TFIDF算法,有时间再具体补上. 2 算法介绍 2.1 贝叶斯定理 (1

基于概率论的分类方法:朴素贝叶斯算法实践学习

      关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月12日 13:03:46所撰写内容(http://blog.csdn.net/qq_37608890/article/details/78738552).             本文根据最近学习机器学习书籍 网络文章的情况,特将一些学习思路做了归纳整理,详情如下.如有不当之处,请各位大拿多多指点,在此谢过.          通过前两篇文章,我们对于k-近

统计学习方法 -> 朴素贝叶斯算法

需要知道的是在什么时候可以用朴素贝叶斯算法:需要保证特征条件独立. 主要过程是学习输入和输出的联合概率分布. 预测的时候,就可以根据输入获得对打后验概率对应的输出y. 先验概率:已知输出,求输入.后验概率相反. 简单来说朴素贝叶斯算法,就是在对样本进行学习之后,到了需要做决策的时候,给定x,给出最大概率的y.这个本质上就是一个典型的后验概率模型.不过在该模型的算法推到上,还用到了先验概率的计算.但注意:最终朴素贝叶斯就是一种后验概率模型求P(y|x). 后验概率模型有一个好处,相当于期望风险最小

朴素贝叶斯算法及实现

1.朴素贝叶斯算法介绍 一个待分类项x=(a,b,c...),判断x属于y1,y2,y3...类别中的哪一类. 贝叶斯公式: 算法定义如下: (1).设x={a1, a2, a3, ...}为一个待分类项,而a1, a2, a3...分别为x的特征 (2).有类别集合C={y1, y2,  y3,  ..} (3).计算p(y1|x), p(y2|x), p(y3|x), .... (4).如果p(y(k)|x)=max{p(y1|x), p(y2|x), p(y3|x), ....},则x属于

朴素贝叶斯算法资料整理和PHP 实现版本

朴素贝叶斯算法简洁 http://blog.csdn.net/xlinsist/article/details/51236454 引言 先前曾经看了一篇文章,一个老外程序员写了一些很牛的Shell脚本,包括晚下班自动给老婆发短信啊,自动冲Coffee啊,自动扫描一个DBA发来的邮件啊, 等等.于是我也想用自己所学来做一点有趣的事情.我的想法如下: 首先我写个scrapy脚本来抓取某个网站上的笑话 之后写个Shell脚本每天早上6点自动抓取最新的笑话 然后用朴素贝叶斯模型来判断当前的笑话是否属于成

C#编程实现朴素贝叶斯算法下的情感分析

C#编程实现 这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Progressing)中的重要问题,用以对文本进行正负面的判断,以及情感度评分和意见挖掘.本文借助朴素贝叶斯算法,针对文本正负面进行判别,并且利用C#进行编程实现. 不先介绍点基础? 朴素贝叶斯,真的很朴素 朴素贝叶斯分类算法,是一种有监督学习算法,通过对训练集的学习,基于先验概率与贝叶

【数据挖掘】朴素贝叶斯算法计算ROC曲线的面积

题记:          近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线.也是本节实验课题,roc曲线的计算原理以及如果统计TP.FP.TN.FN.TPR.FPR.ROC面积等等.往往运用ROC面积评估模型准确率,一般认为越接近0.5,模型准确率越低,最好状态接近1,完全正确的模型面积为1.下面进行展开介绍: ROC曲线的面积计算原理 一.朴素贝叶斯法的工作过程框架图 二.利用weka工具,找到训练的预处理数据 1.利用朴素贝叶斯算法对weather.nominal.arff文件进行

数据挖掘|朴素贝叶斯算法

作者:张一 链接:https://zhuanlan.zhihu.com/p/21571692 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 因为后期的项目将涉及到各种各样的价格数据处理问题,所以我们现在开始学习一些简单的数据清洗与算法的知识.关于算法,以前听起来觉得好高大上,现在开始学,觉得书上的描述并不是很通俗易懂,所以用自己的语言来简要写一下这些算法~ 注:非商业转载注明作者即可,商业转载请联系作者授权并支付稿费.本人已授权"维权骑士"网站(ht

朴素贝叶斯算法原理及实现

朴素贝叶斯算法简单高效,在处理分类问题上,是应该首先考虑的方法之一. 1.准备知识 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类. 这个定理解决了现实生活里经常遇到的问题:已知某条件概率,如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A).这里先解释什么是条件概率: 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率.其基本求解公式为:. 下面不加证明地直接给出贝叶斯定理: 2.朴素贝叶斯分类 2.1