SecTools.Org--bp

Burp Suite使用介绍(一) | WooYun知识库

http://drops.wooyun.org/tips/2227

我的渗透利器 | EVILCOS


 

 


 

 

 

 

freerdp

http://foofus.net/goons/fizzgig/fgdump/downloads.htm

SecTools.Org Top Network Security Tools


 

 


 

 

 

 

 

SecTools.Org Top Network Security Tools

Home About/Help Suggest a new tool SecTools.Org: Top 125 Network Security Tools For more than a decade, the Nmap Project has been cataloguing the network sec...

 

View on sectools.org

Preview by Yahoo
 

 

bitcoin--digger

https://www.f2pool.com/

http://www.mnw.cn/news/digi/699354.html

时间: 2024-10-13 01:12:54

SecTools.Org--bp的相关文章

监督算法大比拼之BP、SVM、adaboost非线性多分类实验

写在之前: 前些文章曾经细数过从决策树.贝叶斯算法等一些简单的算法到神经网络(BP).支持向量机(SVM).adaboost等一些较为复杂的机器学习算法(对其中感兴趣的朋友可以往前的博客看看),各种算法各有优缺点,基本上都能处理线性与非线性样本集,然通观这些算法来看,个人感觉对于数据(无论线性还是非线性)的分类上来说,里面比较好的当数BP.SVM.adaboost元算法这三种了,由于前面在介绍相应算法原理以及实验的时候所用的样本以及分类情况都是二分类的,对于多分类的情况未曾涉及过,而实际情况往往

BP神经网络

BP 神经网络中的 BP 为 Back  Propagation 的简写,最早它是由Rumelhart.McCelland等科学家于 1986 年提出来的,Rumelhart 并在Nature 上发表了一篇非常著名的文章 <Learning representations by back-propagating errors> .随着时代的迁移,BP神经网络理论不断的得到改进.更新,现在无疑已成为了应用最为广泛的神经网络模型之一.让我们一起来探索下 BP神经网络最初的 基本模型和概念! 从神经

bp神经网络的实现C++

#include <iostream> #include<stdlib.h> #include <math.h> using namespace std; #define innode 2 #define hiddennode 10 #define outnode 1 #define sample 4 class bpnet { public: double w1[hiddennode][innode]; double w2[outnode][hiddennode];

第5章 实现多层神经网络BP算法

前言 神经网络是一种很特别的解决问题的方法.本书将用最简单易懂的方式与读者一起从最简单开始,一步一步深入了解神经网络的基础算法.本书将尽量避开让人望而生畏的名词和数学概念,通过构造可以运行的Java程序来实践相关算法. 关注微信号"javaresearcher"来获取本书的更多信息. 上一章我们讨论了神经网络的表达能力的数学原理,这一章我们就来实现一个神经网络以及训练算法. 我们今天讨论类似下面的全连接多层单向神经网络: 我们把输入也看作一层,上图中一共有三层.输入和输出层是由问题的输

视觉机器学习读书笔记--------BP学习

反向传播算法(Back-Propagtion Algorithm)即BP学习属于监督式学习算法,是非常重要的一种人工神经网络学习方法,常被用来训练前馈型多层感知器神经网络. 一.BP学习原理 1.前馈型神经网络 是指网络在处理信息时,信息只能由输入层进入网络,随后逐层向前进行传递,一直到输出层,网络中不存在环路:前馈神经网络是神经网络中的典型分层结构,根据前馈网络中神经元转移函数.网络层数.各层基本单元数目以及权重调整方式的不同,可以形成不同功能特点的神经网络.前馈型神经网络由输入层.中间层(隐

用BP人工神经网络识别手写数字

http://wenku.baidu.com/link?url=HQ-5tZCXBQ3uwPZQECHkMCtursKIpglboBHq416N-q2WZupkNNH3Gv4vtEHyPULezDb50ZcKor41PEikwv5TfTqwrsQ4-9wmH06L7bYD04u 用BP人工神经网络识别手写数字 yzw20091201上传于2013-01-31|暂无评价|356人阅读|13次下载|暂无简介|举报文档 在手机打开 赖勇浩( http://laiyonghao.com ) 这是我读工

【转载】BP神经网络

原文地址:http://blog.csdn.net/acdreamers/article/details/44657439 今天来讲BP神经网络,神经网络在机器学习中应用比较广泛,比如函数逼近,模式识别,分类,数据压缩,数据 挖掘等领域.接下来介绍BP神经网络的原理及实现. Contents   1. BP神经网络的认识   2. 隐含层的选取   3. 正向传递子过程   4. 反向传递子过程   5. BP神经网络的注意点   6. BP神经网络的C++实现 1. BP神经网络的认识    

遗传算法优化BP神经网络——非线性函数拟合

遗传算法基本的操作分为: 1.选择操作 2.交叉操作 3.变异操作 遗传算法的基本要素包括染色体编码方法.适应度函数.遗传操作和运行参数. 遗传算法优化BP神经网络算法流程如图3-4所示:

今天开始学Pattern Recognition and Machine Learning (PRML),章节5.2-5.3,Neural Networks神经网络训练(BP算法)

转载请注明出处:Bin的专栏,http://blog.csdn.net/xbinworld 这一篇是整个第五章的精华了,会重点介绍一下Neural Networks的训练方法--反向传播算法(backpropagation,BP),这个算法提出到现在近30年时间都没什么变化,可谓极其经典.也是deep learning的基石之一.还是老样子,下文基本是阅读笔记(句子翻译+自己理解),把书里的内容梳理一遍,也不为什么目的,记下来以后自己可以翻阅用. 5.2 Network Training 我们可

C#实现的bp神经网络并应用于综合评价

由于课程设计选的题目是基于神经网络的综合评价,利用暑假时间用C#实现的bp神经网络.其中用到的_Matrix类是C#实现的矩阵类http://blog.csdn.net/lanqiuchaoren/article/details/37738665.此bp神经网络包含1个隐藏层,其中输入层,隐藏层,输出层个数都可以根据需要更改. 具体bp神经网络代码如下 BP类: using Matrix_Mul; using Excel = Microsoft.Office.Interop.Excel; usi