【Caffe代码解析】compute_image_mean

功能:

计算训练数据库的平均图像。

由于平均归一化训练图像会对结果有提升,所以Caffe里面,提供了一个可选项。

用法:

compute_image_mean [FLAGS] INPUT_DB [OUTPUT_FILE]\n”)

參数:INPUT_DB: 数据库

參数(可选):OUTPUT_FILE: 输出文件名称,不提供的话,不保存平均图像blob

实现方法:

数据源:求平均图像的方法是直接从数据库(LevelDB或者LMDB)里面直接读取出来的,而不是直接用图像数据库里面求出,意味着,必须先进行图像到数据库的转换后,才干求平均图像这一步。

接下来就是遍历KV数据库的每个值while (cursor->valid()) 将每个数据值转换为Datum,datum.ParseFromString(cursor->value());

接着将Datum阶码到sum_blob 中。sum_blob 是一个num=1,channels=图像.channel,height=图像.height ,width=图像.width 的blob

累加:

sum_blob.set_data(i, sum_blob.data(i) + (uint8_t)data[i]);

最后求平均:

sum_blob.set_data(i, sum_blob.data(i) / count);

存在的问题:上述代码仅仅是先累加在处于数目求和,显然,假设须要求平均的图像的数目相当多的话,就有可能溢出(浮点溢出)。

最后,假设要求简单一点的话,也能够直接求每个通道的平均值。

源码://2015.06.04版本号

#include <stdint.h>
#include <algorithm>
#include <string>
#include <utility>
#include <vector>

#include "boost/scoped_ptr.hpp"
#include "gflags/gflags.h"
#include "glog/logging.h"

#include "caffe/proto/caffe.pb.h"
#include "caffe/util/db.hpp"
#include "caffe/util/io.hpp"

using namespace caffe;  // NOLINT(build/namespaces)

using std::max;
using std::pair;
using boost::scoped_ptr;

DEFINE_string(backend, "lmdb",
        "The backend {leveldb, lmdb} containing the images");

int main(int argc, char** argv) {
  ::google::InitGoogleLogging(argv[0]);

#ifndef GFLAGS_GFLAGS_H_
  namespace gflags = google;
#endif

  gflags::SetUsageMessage("Compute the mean_image of a set of images given by"
        " a leveldb/lmdb\n"
        "Usage:\n"
        "    compute_image_mean [FLAGS] INPUT_DB [OUTPUT_FILE]\n");

  gflags::ParseCommandLineFlags(&argc, &argv, true);

  if (argc < 2 || argc > 3) {
    gflags::ShowUsageWithFlagsRestrict(argv[0], "tools/compute_image_mean");
    return 1;
  }

  scoped_ptr<db::DB> db(db::GetDB(FLAGS_backend));
  db->Open(argv[1], db::READ);
  scoped_ptr<db::Cursor> cursor(db->NewCursor());

  BlobProto sum_blob;
  int count = 0;
  // load first datum
  Datum datum;
  datum.ParseFromString(cursor->value());

  if (DecodeDatumNative(&datum)) {
    LOG(INFO) << "Decoding Datum";
  }

  sum_blob.set_num(1);
  sum_blob.set_channels(datum.channels());
  sum_blob.set_height(datum.height());
  sum_blob.set_width(datum.width());
  const int data_size = datum.channels() * datum.height() * datum.width();
  int size_in_datum = std::max<int>(datum.data().size(),
                                    datum.float_data_size());
  for (int i = 0; i < size_in_datum; ++i) {
    sum_blob.add_data(0.);
  }
  LOG(INFO) << "Starting Iteration";
  while (cursor->valid()) {
    Datum datum;
    datum.ParseFromString(cursor->value());
    DecodeDatumNative(&datum);

    const std::string& data = datum.data();
    size_in_datum = std::max<int>(datum.data().size(),
        datum.float_data_size());
    CHECK_EQ(size_in_datum, data_size) << "Incorrect data field size " <<
        size_in_datum;
    if (data.size() != 0) {
      CHECK_EQ(data.size(), size_in_datum);
      for (int i = 0; i < size_in_datum; ++i) {
        sum_blob.set_data(i, sum_blob.data(i) + (uint8_t)data[i]);
      }
    } else {
      CHECK_EQ(datum.float_data_size(), size_in_datum);
      for (int i = 0; i < size_in_datum; ++i) {
        sum_blob.set_data(i, sum_blob.data(i) +
            static_cast<float>(datum.float_data(i)));
      }
    }
    ++count;
    if (count % 10000 == 0) {
      LOG(INFO) << "Processed " << count << " files.";
    }
    cursor->Next();
  }

  if (count % 10000 != 0) {
    LOG(INFO) << "Processed " << count << " files.";
  }
  for (int i = 0; i < sum_blob.data_size(); ++i) {
    sum_blob.set_data(i, sum_blob.data(i) / count);
  }
  // Write to disk
  if (argc == 3) {
    LOG(INFO) << "Write to " << argv[2];
    WriteProtoToBinaryFile(sum_blob, argv[2]);
  }
  const int channels = sum_blob.channels();
  const int dim = sum_blob.height() * sum_blob.width();
  std::vector<float> mean_values(channels, 0.0);
  LOG(INFO) << "Number of channels: " << channels;
  for (int c = 0; c < channels; ++c) {
    for (int i = 0; i < dim; ++i) {
      mean_values[c] += sum_blob.data(dim * c + i);
    }
    LOG(INFO) << "mean_value channel [" << c << "]:" << mean_values[c] / dim;
  }
  return 0;
}
时间: 2024-08-24 20:56:26

【Caffe代码解析】compute_image_mean的相关文章

【Caffe代码解析】Layer网络层

Layer 功能: 是全部的网络层的基类,当中.定义了一些通用的接口,比方前馈.反馈.reshape,setup等. #ifndef CAFFE_LAYER_H_ #define CAFFE_LAYER_H_ #include <algorithm> #include <string> #include <vector> #include "caffe/blob.hpp" #include "caffe/common.hpp" #

Caffe 代码解析-convert_imageset

使用方法: convert_imageset [FLAGS] ROOTFOLDER/ LISTFILE DB_NAME 其中 参数:ROOTFOLDER 表示输入的文件夹 参数:LISTFILE 表示输入文件列表,其每一行为:类似 subfolder1/file1.JPEG 7 可选参数:[FLAGS] 可以指示是否使用shuffle,颜色空间,编码等. 实现方法: 首先,将文件名与它对应的标签用 std::pair 存储起来,其中first存储文件名,second存储标签, 其次,数据通过 D

ffmpeg代码解析

void avdevice_register_all(void){    static int initialized;    if (initialized)        return;    initialized = 1;    /* devices */    REGISTER_INOUTDEV(ALSA,             alsa);    REGISTER_INDEV   (AVFOUNDATION,     avfoundation);    REGISTER_INDEV

[nRF51822] 10、基础实验代码解析大全 &#183; 实验15 - RTC

一.实验内容: 配置NRF51822 的RTC0 的TICK 频率为8Hz,COMPARE0 匹配事件触发周期为3 秒,并使能了TICK 和COMPARE0 中断. TICK 中断中驱动指示灯D1 翻转状态, 即指示灯D1 以8Hz 的速率翻转状态 COMPARE0 中断中点亮指示灯D2 二.nRF51822的内部RTC结构: NRF51822 有两个RTC 时钟:RTC0,RTC1.两个RTC 均为24 位,使用LFCLK 低频时钟,并带有12 位分频器,可产生TICK.compare 和溢出

(转)Java二进制指令代码解析

转自http://www.blogjava.net/DLevin/archive/2011/09/13/358497.html Java二进制指令代码解析 Java源码在运行之前都要编译成为字节码格式(如.class文件),然后由ClassLoader将字节码载入运行.在字节码文件中,指令代码只是其中的一部分,里面还记录了字节码文件的编译版本.常量池.访问权限.所有成员变量和成员方法等信息(详见Java字节码格式详解).本文主要简单介绍不同Java指令的功能以及在代码中如何解析二进制指令. Ja

Storm中的LocalState 代码解析

官方的解释这个类为: /** * A simple, durable, atomic K/V database. *Very inefficient*, should only be * used for occasional reads/writes. Every read/write hits disk. */ 简单来理解就是这个类每次读写都会将一个Map<Object, Object>的对象序列化存储到磁盘中,读的时候将其反序列化. 构造函数指定的参数就是你在磁盘中存储的目录,同时也作为

Java二进制指令代码解析

http://www.blogjava.net/DLevin/archive/2011/09/13/358497.html http://blog.csdn.net/sum_rain/article/details/39892219 http://www.blogjava.net/DLevin/archive/2011/09/13/358497.html Java二进制指令代码解析 小注:去年在看<深入解析JVM>书的时候做的一些记录,同时参考了<Java虚拟机规范>.只是对指令的

[nRF51822] 12、基础实验代码解析大全 &#183; 实验19 - PWM

一.PWM概述: PWM(Pulse Width Modulation):脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形. PWM 的几个基本概念: 1) 占空比:占空比是指在一个周期内,信号处于高电平的时间占整个信号周期的百分比,方波的占空比是50%. 2) 调制频率:周期的倒数. 3) 脉冲宽度:信号处于高电平的时间. 二.nRF51822的PWM产生: NRF51822 通过Timer.PPI 和GPIOTE 的配合实现PWM 的功能,由Timer 产生一个事件,

[nRF51822] 11、基础实验代码解析大全 &#183; 实验16 - 内部FLASH读写

 一.实验内容: 通过串口发送单个字符到NRF51822,NRF51822 接收到字符后将其写入到FLASH 的最后一页,之后将其读出并通过串口打印出数据. 二.nRF51822芯片内部flash知识: EN-nRF51D 开发板使用NRF51822 芯片为nRF51822-QFAA,如下图所示,共有256KBFLASH,256 页,页大小为1024 字节. NRF51822 内部FLASH 写流程如下: 三.代码解析: main: 1 int main(void) 2 { 3 ... 4 5