抽象理解切片递归神经网络(SRNN)的结构

过年这几天只能待家里了,最近几个月,上海交通大学的研究人员提出了切片递归神经网络(SRNN)的结构,该结构在不改变循环单元的情况下比RNN结构快135倍。
  这种操作,就像踩在一个热轮子上,是怎么发生的?
  在论文《Sliced Recurrent Neural Networks》中,研究者给出了具体的介绍。让我们来看看这篇论文的重点“只关注不谈论”——。
  “曲线救国”的PaperBERT
  传统RNN结构中最流行的循环单元是LSTM和GRU,两者都可以通过隐藏层中的门控机制(Gating Mechanism)来存储最近的信息,然后确定这些信息将与输入结合多少。这种结构的缺点也很明显,RNN很难实现并行处理。
  传统RNN结构,代表循环单位
  因此,许多学者在自然语言处理任务中选择有人工智能写作软件,但是有线电视新闻网不能有效地获取重要的序列信息,效果也不理想。
  在RNN结构的基础上改进了SRNN结构,将输入序列分割成最小的等子序列。在这种结构中,无需等待前一步骤的输出结果,循环单元可以在每层的每个子序列中同时开始,并且信息可以通过多层神经网络传输。
   SRNN结构图,代表循环单元
  最后,研究人员比较了SRNN和RNN在不同序列长度下的训练时间和速度。
  结果表明,序列越长,SRNN的优势越明显。当序列长度为32768时,SRNN的速度达到RNN的136倍。
  摘要
  在自然语言处理的许多任务中,循环神经网络已经取得了成功。然而,这个循环的结构使得并行化非常困难,所以训练RNN通常需要很长时间。
  本文提出了一种切片循环神经网络结构,可以将序列分割成多个子序列,从而实现并行。这种结构可以用较少的附加参数通过多层神经网络获得高层信息。
  我们已经证明,当SRNN使用线性激活函数时,我们可以把标准RNN结构理解为特殊情况。
  不改变循环单位,SRNN可以比标准RNN快135倍,训练长序列时甚至更快。我们还利用大型情感分析数据集的实验来证明SRNN比RNN表现更好。
  纸质门户
  关于本研究的更多细节,我们可以参考上海交通大学电气信息与电气工程学院的俞泽平和沈工刘的论文《Sliced Recurrent Neural Networks》。
如果您有互联网问题,也可以咨询我,谢谢!如果你也想一起学习人工智能,http://www.paperbert.com/ 欢迎留言交流。

原文地址:https://www.cnblogs.com/phploser/p/12233596.html

时间: 2024-11-13 08:03:39

抽象理解切片递归神经网络(SRNN)的结构的相关文章

递归神经网络的不可思议的有效性 [ 译 / 转 ]

递归神经网络(Recurrent Neural Networks,RNNs)就像一种神奇的魔法.我至今仍对于我第一次训练递归网络记忆犹新.那个网络是被用于生成图像说明(Image Captioning)的.仅仅进行了几十分钟的训练,我的第一个模型(这个模型中相当一部分超参数都是我随意选取的)就开始能给图片生成看起来非常不错的描述,而这些描述基本上能称得上是有意义的.有时结果的质量和模型复杂度之间的关联性完全超出你的预期,而我的第一次实验就是一个例子.为什么当时这些训练结果看起来如此惊人?是因为大

深入探究递归神经网络:大牛级的训练和优化如何修成?

深入探究递归神经网络:大牛级的训练和优化如何修成? 摘要:不同于传统FNN,RNN无需在层面之间构建,同时引入定向循环,能够更好地处理高维度信息的整体逻辑顺序.本文中,MIT的Nikhil Buduma将带您深入探析RNN的原理.训练和优化等各方面的内容,以及RNN已经获取的一些成就. 在深度学习领域,传统的前馈神经网络(feed-forward neural net,简称FNN)具有出色的表现,取得了许多成功,它曾在许多不同的任务上——包括手写数字识别和目标分类上创造了记录.甚至到了今天,FN

能模仿韩寒小四写作的神奇递归神经网络

作者:寒小阳 && 龙心尘 时间:2016年4月 出处: http://blog.csdn.net/han_xiaoyang/article/details/51253274 http://blog.csdn.net/longxinchen_ml/article/details/51253526 声明:版权所有,转载请联系作者并注明出处 特别鸣谢:北京大学焦剑博士对Recurrent Neural Networks Tutorial part1一文的翻译和部分内容提供 1.引言 在离人工智

递归神经网络不可思议的有效性

递归神经网络(RNNs)有一些不可思议的地方.我仍然记得我训练的第一个用于 图片字幕的递归网络.从花几十分钟训练我的第一个婴儿模型(相当随意挑选的超参数)开始,到训练出能够针对图像给出有意义描述的模型.有些时候,模型对于输出结果质量的简单程度的比例,会与你的期望相差甚远,而这还仅仅是其中一点.有如此令人震惊结果,许多人认为是因为RNNs非常难训练(事实上,通过多次试验,我得出了相反的结论).一年前:我一直在训练RNNs,我多次见证了它们的强大的功能和鲁棒性,而且它们的输出结果同样让我感到有趣.这

卷积神经网络(CNN)模型结构

卷积神经网络(CNN)模型结构 转载:http://www.cnblogs.com/pinard/p/6483207.html 看到的一片不错的文章,先转过来留着,怕以后博主删了.哈哈哈 在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型结构做一个总结. 在学习CNN前,推荐大家

C#基础:用简单的文件管理程序来理解应用递归

最近在紧张的学习C#,说实话对C#之前没有太多的接触过,只知道C#的特性与java很相似,接触了之后才发现C#跟java相比区别不是很多,但它是一门实现程序能力比Java还要好的语言(仅代表个人观点). 有许多新手在学习编程语言的时候,都会在递归上面卡住,理解和应用起来会十分的吃力,所以我就自己尝试用递归写了一个很简单很简单很简单的文件管理程序,说它简单是因为他真的没有什么难度,都是很底层的循环和递归,也就只有130多行代码,只是希望能够帮助大家理解应用递归.如果你一点编程基础木有,那请不要直接

TensorFlow(十一):递归神经网络(RNN与LSTM)

RNN RNN(Recurrent Neural Networks,循环神经网络)不仅会学习当前时刻的信息,也会依赖之前的序列信息.由于其特殊的网络模型结构解决了信息保存的问题.所以RNN对处理时间序列和语言文本序列问题有独特的优势.递归神经网络都具有一连串重复神经网络模块的形式.在标准的RNNs中,这种重复模块有一种非常简单的结构. 那么S(t+1) = tanh( U*X(t+1) + W*S(t)).tanh激活函数图像如下: 激活函数tanh把状态S值映射到-1和1之间. RNN通过BP

NeuralFinder:集成人工生命和遗传算法自动发现神经网络最优结构

/* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/ 张俊林 黄通文 马柏樟  薛会萍                一.为什么要做神经网络结构自动发现 从16年年中开始,我们开始思考最优的深度神经网络结构自动发现的问题,并在业余时间开始逐步做些探索性的实验.当时的出发点其实很简单:对于解决某个机器学习任务,目前的常规做法是通过算法研发人员分析问题特性,并不断设计修改试探深度神经网络的结构,找到最适合解决手头问题的网络结构,然后通过不断调参来获得解决问题的最优网络结构及其对应

<11>【了解】递归函数概述及构成条件+【理解】递归应用举例

[了解]递归函数概述及构成条件 递归函数: 在函数的内部存在调用当前函数本身的语句,这个函数就是递归函数 递归调用: 递归函数中,调用自己的操作,递归调用 递归调用注意: 1)主调函数就是被调函数 2)在递归函数中应该存在能够让递归结束的条件 构成递归的条件: 1)存在自己调用自己 2)存在一个条件 ,能够让递归结束(否则,是死循环) n==1 age = 10 3)能够找到一个规律,让要解决的问题的规模缩小 递归的阶段: 1)递推阶段 内存栈的特点:先进后出, 2)回归迭代阶段 迭代计算,一步