浅析树链剖分

前言


树链剖分我觉得最精妙的地方就在于它是通过$dfs$序将树形结构转为线性结构便于处理,进而可以用数据结构(线段树、树状数组等)去进行修改和查询。

将复杂的结构转化为相对我们熟悉简单的结构,这个思想对很多问题是通吃的,不仅仅在树形问题,算法中,在其他领域中也常常会用到这种思想

我们先来回顾两个问题

1.将树从$x$到$y$结点最短路径上所有节点的值都加上z

我们很容易想到,树上差分可以以 $O(n+m)$的优秀复杂度解决这个问题

2.求树从$x$到$y$结点最短路径上所有节点的值之和

$lca$大水题,我们又很容易地想到, $dfs$ $O(n)$预处理每个节点的$dis$(即到根节点的最短路径长度)

然后对于每个询问,求出$x,y$两点的$lca$,利用$lca$的性质$dis(x,y)=dis(x)+dis(y)-2*dis(lca)$求出结果,时间复杂度 $O(mlogn+n)$

现在来思考一个$bug$:

如果刚才的两个问题结合起来,成为一道题的两种操作呢?

刚才的方法显然就不够优秀了(每次询问之前要跑$dfs$更新 $dis$ )

理解



树剖是通过轻重边剖分将树分割成多条链,然后利用数据结构来维护这些链(本质上是一种优化暴力)

给定一棵有根树,对于每个非叶结点$u$,设$u$的子树中结点数最多的子树的树根为$v$,则标记$(u,v)$为重边,从$u$出发往下的其他边均为轻边

如图所示(结点中的数字代表结点的$size$值,即以该结点为根的子树的结点数)

根据上面的定义,只需一次$DFS$就能把一棵有根树分解成若干重路径(重边组成的路径)和若干轻边

有些资料也把重路径称为树链,因此轻重路径剖分也称树链剖分。 (下面的定理结论可不看)

路径剖分中最重要的定理如下:若$v$是$u$的子结点,$(u,v)$是轻边,则$size(v)<size(u)/2$,其中$size(u)$表示以$u$为根的子树中的结点总数(可以自己推导下)

由此可以得到如下的重要结论:对于任意非根结点$u$,在$u$到根的路径上,轻边和重路径的条数均不超过$log_{2}n$,因为每碰到一条轻边,$size$值就会减半。(对于概念,我还是觉得刘汝佳讲的最准确和便于理解)

因此重链剖分可以将树上的任意一条路径划分成不超过$O(logn)$条连续的链,每条链上的点深度互不相同(即是自底向上的一条链,链上所有点的 $LCA$ 为链的一个端点)。

重链剖分还能保证划分出的每条链上的节点 $DFS$ 序连续,因此可以方便地用一些维护序列的数据结构(如线段树)来维护树上路径的信息,如:

1.修改 树上两点之间的路径上 所有点的值
2.查询 树上两点之间的路径上 节点权值的 和/极值/其它(在序列上可以用数据结构维护,便于合并的信息)
除了配合数据结构来维护树上路径信息,树剖还可以用来$O(logn)$  (且常数较小)地求 $LCA$。
在某些题目中,还可以利用其性质来灵活地运用树剖

实现


首先第一遍$dfs$,对于每个节点,我们主要是求出它所在子树的大小并标记重儿子

void dfs1(int u, int fa){
    size[u] = 1; //这个点本身size=1
    for(int i = head[u]; i; i = e[i].next){
        int v = e[i].to;
        if(v==fa) continue;
        dep[v] = dep[u] + 1, f[v] = u;
        dfs1(v, u), size[u] += size[v]; //子节点的size已被处理,用它来更新父节点的size
        if(size[v]>size[son[u]]) son[u] = v; //选取size最大的作为重儿子
    }
} 

第二遍 dfs,然后连接重链,同时标记每一个节点的 dfs序,并且为了用数据结构来维护重链,我们在 dfs时保证一条重链上各个节点 dfs序连续

原文地址:https://www.cnblogs.com/wizarderror/p/12192803.html

时间: 2024-11-02 21:17:36

浅析树链剖分的相关文章

浅析树链剖分Orz

本文思路参考自何开大佬 引子 相信各位大佬一定会线段树这种非常实用的数据结构 那么如果我们要维护一棵树上的链的权值的时候怎么办 就比如说BZOJ1036树的统计这道题目 可能诸位草率地想想线段树是可以口头AC的,But 这是在一棵树上,线段树支持的连续的区间操作 在这棵树上,如果链的编号断断续续,那么我们的线段树就和暴力没有什么区别有一点点区别了 概念 所以这里就需要用到树链剖分,这种可以支持树上链操作的数据结构 树链剖分有很多高大上的名词需要我们去记 我们先定义一些概念东东 size[u]表示

BZOJ 2243: [SDOI2011]染色 树链剖分

2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1886  Solved: 752[Submit][Status] Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由3段组成:“11”.“222”和“1”. 请你写一个程序依次完成这m个操作. In

bzoj 2243: [SDOI2011]染色 线段树区间合并+树链剖分

2243: [SDOI2011]染色 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 7925  Solved: 2975[Submit][Status][Discuss] Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的颜色段数量(连续相同颜色被认为是同一段),如“112221”由3段组成:“11”.“222”和“1”. 请你写一个程序依次完

bzoj3694: 最短路(树链剖分/并查集)

bzoj1576的帮我们跑好最短路版本23333(双倍经验!嘿嘿嘿 这题可以用树链剖分或并查集写.树链剖分非常显然,并查集的写法比较妙,涨了个姿势,原来并查集的路径压缩还能这么用... 首先对于不在最短路径树上的边x->y,设t为最短路径树上lca(x,y),则t到y上的路径上的点i到根的距离都可以用h[x]+dis[x][y]+h[y]-h[i](h[]为深度)来更新,因为h[i]一定,只要让h[x]+dis[x][y]+h[y]最小就行,这里用树剖直接修改整条链上的数,就可以过了. 并查集的

洛谷 P3384 【模板】树链剖分

题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和 操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z 操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和 输入输出格式 输入格式: 第一行包含4个正整数N.M.R.P,分别表示树的结点个数.操作个数

bzoj1036 树的统计(树链剖分+线段树)

1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 15120  Solved: 6141[Submit][Status][Discuss] Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I

SPOJ QTREE Query on a tree ——树链剖分 线段树

[题目分析] 垃圾vjudge又挂了. 树链剖分裸题. 垃圾spoj,交了好几次,基本没改动却过了. [代码](自带常数,是别人的2倍左右) #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define maxn 20005 int T,n,fr[maxn],h[maxn],to[maxn],ne[maxn]

树链剖分简(单)介(绍)

树链剖分可以算是一种数据结构(一大堆数组,按照这个意思,主席树就是一大堆线段树).将一棵树分割成许多条连续的树链,方便完成一下问题: 单点修改(dfs序可以完成) 求LCA(各种乱搞也可以) 树链修改(修改任意树上两点之间的唯一路径) 树链查询 (各种操作)  前两个内容可以用其他方式解决,但是下面两种操作倍增.st表,dfs序就很难解决(解决当然可以解决,只是耗时长点而已).下面开始步入正题. 树链剖分的主要目的是分割树,使它成一条链,然后交给其他数据结构(如线段树,Splay)来进行维护.常

bzoj1146整体二分+树链剖分+树状数组

其实也没啥好说的 用树状数组可以O(logn)的查询 套一层整体二分就可以做到O(nlngn) 最后用树链剖分让序列上树 1 #include<cstdio> 2 #include<cstring> 3 #include<iostream> 4 #include<algorithm> 5 using namespace std; 6 inline int read() 7 { 8 int x=0,f=1,ch=getchar(); 9 while(ch<