学习JDK源码(一):String

  用了好久的Java了,从来没有看过jdk的源码,趁着今天有点时间,拿出了jdk的源码看了下,今天先看了关于String的,毕竟开发中String类型使用最广泛。在我们下载安装jdk的时候,部分源码也已经同时存放在我们电脑里了,具体路径为jdk目录下的src.zip压缩包,解压即可。

java.lang.String

1 public final class String 2 implements java.io.Serializable, Comparable<String>, CharSequence

这是String类的声明,很明显它是由final类型声明的,所以它不能被继承,而它又实现了Serializable接口,代表它是可以被序列化的。

接着我们来看看类内部是怎么定义的

/** The value is used for character storage. */
    private final char value[];

使用final类型的字符数组存储字符串内容,String初始化后就不能被改变。

有一种写法,String s = “abc”; s = “bcd”;当然这并不是改变了字符串s的值,只是将s指向了一个新的字符串,所以千万不要以为字符串是可以变的。

/** Cache the hash code for the string */
    private int hash; // Default to 0

指定缓存字符串的hash code的值,默认为0

/** use serialVersionUID from JDK 1.0.2 for interoperability */
    private static final long serialVersionUID = -6849794470754667710L;
相当于java类的身份证。主要用于版本控制。serialVersionUID作用是序列化时保持版本的兼容性,即在版本升级时反序列化仍保持对象的唯一性。有两种生成方式:       一个是默认的1L,比如:private static final long serialVersionUID = 1L;       一个是根据类名、接口名、成员方法及属性等来生成一个64位的哈希字段,比如:       private static final long serialVersionUID = xxxxL;
/**
     * Class String is special cased within the Serialization Stream Protocol.
     *
     * A String instance is written into an ObjectOutputStream according to
     * <a href="{@docRoot}/../platform/serialization/spec/output.html">
     * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
     */
    private static final ObjectStreamField[] serialPersistentFields =
        new ObjectStreamField[0];
serialPersistentFields 用于指定哪些字段需要被默认序列化,如:
private static final ObjectStreamField[] serialPersistentFields =
{
    new ObjectStreamField("name", String.class),
    new ObjectStreamField("a", Integer.TYPE)
}; 
看了String类的构造方法,惊叹不已,源码中有足足15种构造方法,其中最常用的不外乎以下几种
public String(byte bytes[]) {
        this(bytes, 0, bytes.length);
    }
public String(StringBuffer buffer) {
        synchronized(buffer) {
            this.value = Arrays.copyOf(buffer.getValue(), buffer.length());
        }
    }
public String(StringBuilder builder) {
        this.value = Arrays.copyOf(builder.getValue(), builder.length());
    }

再往后看就是String类自身提供的一系列方法了:
// 返回字符串的长度
    public int length() {
        return value.length;
    }
    // 字符串是否为空
    public boolean isEmpty() {
        return value.length == 0;
    }
    // 字符串目标位置的字符
    public char charAt(int index) {
        if ((index < 0) || (index >= value.length)) {
            throw new StringIndexOutOfBoundsException(index);
        }
        return value[index];
    }
    // 返回指定索引处的字符
    public int codePointAt(int index) {
        if ((index < 0) || (index >= value.length)) {
            throw new StringIndexOutOfBoundsException(index);
        }
        return Character.codePointAtImpl(value, index, value.length);
    }
    // 返回指定索引之前的字符
    public int codePointBefore(int index) {
        int i = index - 1;
        if ((i < 0) || (i >= value.length)) {
            throw new StringIndexOutOfBoundsException(index);
        }
        return Character.codePointBeforeImpl(value, index, 0);
    }
    // 返回此 String 的指定文本范围中的 Unicode 代码点数
    public int codePointCount(int beginIndex, int endIndex) {
        if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {
            throw new IndexOutOfBoundsException();
        }
        return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);
    }
//返回从0处开始的第i个Code Point的位置
public int offsetByCodePoints(int index, int codePointOffset) {
        if (index < 0 || index > value.length) {
            throw new IndexOutOfBoundsException();
        }
        return Character.offsetByCodePointsImpl(value, 0, value.length,
                index, codePointOffset);
    }
    //判断两个字符串是否相等
public boolean equals(Object anObject) {
        if (this == anObject) {
            return true;
        }
        if (anObject instanceof String) {
            String anotherString = (String)anObject;
            int n = value.length;
            if (n == anotherString.value.length) {
                char v1[] = value;
                char v2[] = anotherString.value;
                int i = 0;
                while (n-- != 0) {
                    if (v1[i] != v2[i])
                        return false;
                    i++;
                }
                return true;
            }
        }
        return false;
    }
    //不区分大小写的情况下比较两个字符串是否相等
public boolean equalsIgnoreCase(String anotherString) {
        return (this == anotherString) ? true
                : (anotherString != null)
                && (anotherString.value.length == value.length)
                && regionMatches(true, 0, anotherString, 0, value.length);
    }
//计算当前字符串比目标字符串长度大多少
public int compareTo(String anotherString) {
        int len1 = value.length;
        int len2 = anotherString.value.length;
        int lim = Math.min(len1, len2);
        char v1[] = value;
        char v2[] = anotherString.value;

        int k = 0;
        while (k < lim) {
            char c1 = v1[k];
            char c2 = v2[k];
            if (c1 != c2) {
                return c1 - c2;
            }
            k++;
        }
        return len1 - len2;
    }


//获取哈希值
public int hashCode() {
        int h = hash;
        if (h == 0 && value.length > 0) {
            char val[] = value;

            for (int i = 0; i < value.length; i++) {
                h = 31 * h + val[i];
            }
            hash = h;
        }
        return h;
    }
//返回某个指定的字符串值在字符串中首次出现的位置
public int indexOf(int ch) {
        return indexOf(ch, 0);
    }
public int indexOf(int ch, int fromIndex) {
        final int max = value.length;
        if (fromIndex < 0) {
            fromIndex = 0;
        } else if (fromIndex >= max) {
            // Note: fromIndex might be near -1>>>1.
            return -1;
        }

        if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
            // handle most cases here (ch is a BMP code point or a
            // negative value (invalid code point))
            final char[] value = this.value;
            for (int i = fromIndex; i < max; i++) {
                if (value[i] == ch) {
                    return i;
                }
            }
            return -1;
        } else {
            return indexOfSupplementary(ch, fromIndex);
        }
    }
//返回某个指定的字符串值在字符串中最后一次出现的位置
public int lastIndexOf(int ch) {
        return lastIndexOf(ch, value.length - 1);
    }
public int lastIndexOf(int ch, int fromIndex) {
        if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
            // handle most cases here (ch is a BMP code point or a
            // negative value (invalid code point))
            final char[] value = this.value;
            int i = Math.min(fromIndex, value.length - 1);
            for (; i >= 0; i--) {
                if (value[i] == ch) {
                    return i;
                }
            }
            return -1;
        } else {
            return lastIndexOfSupplementary(ch, fromIndex);
        }
    }
//从指定位置截取字符串直至最后一位
public String substring(int beginIndex) {
        if (beginIndex < 0) {
            throw new StringIndexOutOfBoundsException(beginIndex);
        }
        int subLen = value.length - beginIndex;
        if (subLen < 0) {
            throw new StringIndexOutOfBoundsException(subLen);
        }
        return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
    }
//截取字符串从beginIndex至beginIndex
public String substring(int beginIndex, int endIndex) {
        if (beginIndex < 0) {
            throw new StringIndexOutOfBoundsException(beginIndex);
        }
        if (endIndex > value.length) {
            throw new StringIndexOutOfBoundsException(endIndex);
        }
        int subLen = endIndex - beginIndex;
        if (subLen < 0) {
            throw new StringIndexOutOfBoundsException(subLen);
        }
        return ((beginIndex == 0) && (endIndex == value.length)) ? this
                : new String(value, beginIndex, subLen);
    }
//字符串拼接
public String concat(String str) {
        int otherLen = str.length();
        if (otherLen == 0) {
            return this;
        }
        int len = value.length;
        char buf[] = Arrays.copyOf(value, len + otherLen);
        str.getChars(buf, len);
        return new String(buf, true);
 }
//字符串替换
public String replace(char oldChar, char newChar) {
        if (oldChar != newChar) {
            int len = value.length;
            int i = -1;
            char[] val = value; /* avoid getfield opcode */

            while (++i < len) {
                if (val[i] == oldChar) {
                    break;
                }
            }
            if (i < len) {
                char buf[] = new char[len];
                for (int j = 0; j < i; j++) {
                    buf[j] = val[j];
                }
                while (i < len) {
                    char c = val[i];
                    buf[i] = (c == oldChar) ? newChar : c;
                    i++;
                }
                return new String(buf, true);
            }
        }
        return this;
    }
//判断字符串是否包含在另一个字符串中
public boolean contains(CharSequence s) {
        return indexOf(s.toString()) > -1;
    }
//将目标字符串中匹配的字符全部替换成另一字符串
public String replaceAll(String regex, String replacement) {
        return Pattern.compile(regex).matcher(this).replaceAll(replacement);
    }
//按约定分隔符将目标字符串分割成多个字符串并返回字符串数组
public String[] split(String regex, int limit) {
        /* fastpath if the regex is a
         (1)one-char String and this character is not one of the
            RegEx‘s meta characters ".$|()[{^?*+\\", or
         (2)two-char String and the first char is the backslash and
            the second is not the ascii digit or ascii letter.
         */
        char ch = 0;
        if (((regex.value.length == 1 &&
             ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
             (regex.length() == 2 &&
              regex.charAt(0) == ‘\\‘ &&
              (((ch = regex.charAt(1))-‘0‘)|(‘9‘-ch)) < 0 &&
              ((ch-‘a‘)|(‘z‘-ch)) < 0 &&
              ((ch-‘A‘)|(‘Z‘-ch)) < 0)) &&
            (ch < Character.MIN_HIGH_SURROGATE ||
             ch > Character.MAX_LOW_SURROGATE))
        {
            int off = 0;
            int next = 0;
            boolean limited = limit > 0;
            ArrayList<String> list = new ArrayList<>();
            while ((next = indexOf(ch, off)) != -1) {
                if (!limited || list.size() < limit - 1) {
                    list.add(substring(off, next));
                    off = next + 1;
                } else {    // last one
                    //assert (list.size() == limit - 1);
                    list.add(substring(off, value.length));
                    off = value.length;
                    break;
                }
            }
            // If no match was found, return this
            if (off == 0)
                return new String[]{this};

            // Add remaining segment
            if (!limited || list.size() < limit)
                list.add(substring(off, value.length));

            // Construct result
            int resultSize = list.size();
            if (limit == 0) {
                while (resultSize > 0 && list.get(resultSize - 1).length() == 0) {
                    resultSize--;
                }
            }
            String[] result = new String[resultSize];
            return list.subList(0, resultSize).toArray(result);
        }
        return Pattern.compile(regex).split(this, limit);
    }
 

 
时间: 2024-11-02 05:16:27

学习JDK源码(一):String的相关文章

JDK源码之String、StringBuffer、StringBuilder

就String而言,平时工作中用得最多,但是很多时候还是用不好,有必要对他进行整体的分析下.如果看过Thinking in java,再看下JDK的源码,很多东西就会变得十分明了.现在对String的底层实现进行下分析. 首先是对构造函数而言,我工作中最常用到的可能就是new String(str)这个构造函数了,所以再在此关注这一个.这个构造函数是对传进来的String进行解析,将其放进一个数组当中,我们设定为arrayOfChar,String类定义了全局变量offset(偏移量),coun

学习JDK源码(二):Integer

最近没有好好保持学习的好习惯,该打. 天天忙,感觉都不知道在干嘛.真的厌倦了普通的Java代码,还是想学点新技术. 用了这么久的Java,最常用的数据类型肯定是Int了,而他的包装类Integer用的其实也不少.但是问问我们自己,当我们创建一个数字对象时,你们是直接new int x =1的多吧,或者说用new Integer(1),其实这样写的已经就很少了,我就没怎么这么写过.直到最近,我才知道一个能提升性能的方法Integer.valueOf(1),他可以使用系统缓存,既能减少可能的内存占用

jdk源码理解-String类

String类的理解 简记录一下对于jdk的学习,做一下记录,会持续补充,不断学习,加油 1.String的hash值的计算方法. hash值的计算方法多种多样,jdk中String的计算方法如下,比较简单,由字符串中的字符的ASCII值计算出来. /** * Returns a hash code for this string. The hash code for a * <code>String</code> object is computed as * <block

JDK源码学习--String篇(二) 关于String采用final修饰的思考

JDK源码学习String篇中,有一处错误,String类用final[不能被改变的]修饰,而我却写成静态的,感谢CTO-淼淼的指正. 风一样的码农提出的String为何采用final的设计,阅读JDK源码的时候,有粗略的思考过,今天下班后又把<Thinking in Java>中关于final的内容重新看了一遍,对此写下一些关于自己的理解和想法. String类中final关键字的使用 final关键字,用来描述一块数据不能被改变,两种可能理由:设计.效率 final使用的三种情况:数据.方

JDK源码学习系列08----HashMap

                                                          JDK源码学习系列08----HashMap 1.HashMap简介 HashMap 是一个散列表,它存储的内容是键值对(key-value)映射. HashMap 继承于AbstractMap,实现了Map.Cloneable.java.io.Serializable接口. HashMap 的实现不是同步的,这意味着它不是线程安全的.它的key.value都可以为null.此外,

JDK源码学习LinkedList

LinkedList是List接口的子类,它底层数据结构是双向循环链表.LinkedList还实现了Deque接口(double-end-queue双端队列,线性collection,支持在两端插入和移除元素).所以LinkedList既可以被当作双向链表,还可以当做栈.队列或双端队列进行操作.文章目录如下: 1.LinkedList的存储实现(jdk 1.7.0_51) 2.LinkedList的读取实现 3.LinkedList的性能分析 下面我们进入正题,开始学习LinkedList. L

JDK源码学习系列06----Vector

                                            JDK源码学习系列06----Vector 1.Vector简介 Vector的内部是数组实现的,它和ArrayList非常相似,最大的不同就是 Vector 是线程安全(同步)的. public class Vector<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.S

JDK源码学习09----HashTable

                                                         JDK源码学习09----HashTable 1.HashTable简介 Hashtable 也是一个散列表,它存储的内容是键值对(key-value)映射. Hashtable 继承于Dictionary,实现了Map.Cloneable.java.io.Serializable接口. Hashtable 的函数都是同步的,这意味着它是线程安全的.它的key.value都不可以为n

由JDK源码学习HashMap

HashMap基于hash表的Map接口实现,它实现了Map接口中的所有操作.HashMap允许存储null键和null值.这是它与Hashtable的区别之一(另外一个区别是Hashtable是线程安全的).另外,HashMap中的键值对是无序的.下面,我们从HashMap的源代码来分析HashMap的实现,以下使用的是Jdk1.7.0_51. 一.HashMap的存储实现 HashMap底层采用的是数组和链表这两种数据结构.当我们把key-value对put到HashMap时,系统会根据ha