hdu 1698 线段树 区间更新

Just a Hook

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 36313    Accepted Submission(s):
17713

Problem Description

In the game of DotA, Pudge’s meat hook is actually the
most horrible thing for most of the heroes. The hook is made up of several
consecutive metallic sticks which are of the same length.

Now Pudge wants to
do some operations on the hook.

Let us number the consecutive metallic
sticks of the hook from 1 to N. For each operation, Pudge can change the
consecutive metallic sticks, numbered from X to Y, into cupreous sticks, silver
sticks or golden sticks.
The total value of the hook is calculated as the sum
of values of N metallic sticks. More precisely, the value for each kind of stick
is calculated as follows:

For each cupreous stick, the value is 1.
For
each silver stick, the value is 2.
For each golden stick, the value is
3.

Pudge wants to know the total value of the hook after performing the
operations.
You may consider the original hook is made up of cupreous
sticks.

Input

The input consists of several test cases. The first
line of the input is the number of the cases. There are no more than 10
cases.
For each case, the first line contains an integer N,
1<=N<=100,000, which is the number of the sticks of Pudge’s meat hook and
the second line contains an integer Q, 0<=Q<=100,000, which is the number
of the operations.
Next Q lines, each line contains three integers X, Y,
1<=X<=Y<=N, Z, 1<=Z<=3, which defines an operation: change the
sticks numbered from X to Y into the metal kind Z, where Z=1 represents the
cupreous kind, Z=2 represents the silver kind and Z=3 represents the golden
kind.

Output

For each case, print a number in a line representing
the total value of the hook after the operations. Use the format in the
example.

Sample Input

1
10
2
1 5 2
5 9 3

Sample Output

Case 1: The total value of the hook is 24.

code:

#include <bits/stdc++.h>
using namespace std;
const int maxn=100000+10;

struct node
{
int l,r,sum,lazy;
}t[maxn<<2];

void build (int l,int r,int i)
{
t[i].r=r;
t[i].l=l;
t[i].lazy=0;
if(l==r)
{
t[i].sum=1;
return ;
}
int mid;
mid=(l+r)>>1;
build(l,mid,i<<1);
build(mid+1,r,i<<1|1);
t[i].sum=(t[i<<1].sum+t[i<<1|1].sum);
}

void pushdown (int i)
{
t[i<<1].lazy = t[i].lazy;
t[i<<1|1].lazy= t[i].lazy;
int len=t[i].r-t[i].l+1;
t[i<<1].sum= (len-len/2)*t[i].lazy;
t[i<<1|1].sum=(len/2)*t[i].lazy;
t[i].lazy=0;
}

void update(int l,int r,int i,int z)
{
if(l<=t[i].l && r>=t[i].r)
{
t[i].lazy=z;
t[i].sum=(t[i].r-t[i].l+1)*z;
}
else
{
if(t[i].lazy) pushdown(i);
int mid=(t[i].r+t[i].l)/2;
if(l<=mid)
update(l,r,i<<1,z);
if(r>=mid+1)
update(l,r,i<<1|1,z);
t[i].sum=(t[i<<1].sum+t[i<<1|1].sum);
}
}

int main()
{
int t1,a,b,z,n,Q;
scanf("%d",&t1);
for(int i=1;i<=t1;i++)
{
scanf("%d",&n);
build(1,n,1);
scanf("%d",&Q);
for(int j=0;j<Q;j++)
{
scanf("%d%d%d",&a,&b,&z);
update(a,b,1,z);
//for(int k=1;k<=19;k++)
//if(t[k].l)
//printf("%d %d=%d lazy:%d\n",t[k].l,t[k].r,t[k].sum,t[k].lazy);
}
printf("Case %d: The total value of the hook is %d.\n",i,t[1].sum);
}
return 0;
}

// pushdown  和 update 函数bug:

修改后ac:

时间: 2024-10-11 07:00:20

hdu 1698 线段树 区间更新的相关文章

POJ 2777 &amp;&amp; ZOJ 1610 &amp;&amp;HDU 1698 --线段树--区间更新

直接将这3题 放一起了  今天在做线段树的东西 这3个都是区间更新的 查询方式互相不同 反正都可以放到一起吧 直接先上链接了 touch me touch me touch me 关于涉及到区间的修改 -- 区间更新的话 分为 增减 或者 修改 主要就是个 laze 标记 就是延迟更新 对于区间更新的写法 一般是有2种 其一 仔细划分到每个细小的区间    另一 粗略划分 反正 ==我的代码里会给出2种写法 看自己喜好 hdu 1 //线段树 成段更新 ---> 替换 根结点的查询 2 3 #i

HDU(1698),线段树区间更新

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1698 区间更新重点在于懒惰标记. 当你更新的区间就是整个区间的时候,直接sum[rt] = c*(r-l+1);col[rt] = c:后面的子区间就不管了,当你下次更新某一个区间的时候,把col[rt]从顶往下推(也没有推到底),推到合适的位置,刚好这个位置是我要更新的区间的子区间(可能被横跨了)就停下来. 在这里感谢网上的大牛,感谢杰哥,彬哥.我才能AC. Just a Hook Time Li

HDU 1698 (线段树 区间更新) Just a Hook

有m个操作,每个操作 X Y Z是将区间[X, Y]中的所有的数全部变为Z,最后询问整个区间所有数之和是多少. 区间更新有一个懒惰标记,set[o] = v,表示这个区间所有的数都是v,只有这个区间被分开的时候再往下传递. 1 #include <cstdio> 2 3 const int maxn = 100000 + 10; 4 int sum[maxn << 2], set[maxn << 2]; 5 6 int n, qL, qR, m, v; 7 8 void

HDU 4578 线段树区间更新(确定区间操作的优先级)

HDU 4578 线段树区间更新 操作有: 区间所有数add(c) 区间所有数mul(c) 区间所有数set(c) 查询有: 区间所有数的p次方和(p>= 1 && p <= 3) 关键是区间更新的三种操作的优先级的确定清楚set>mul>add 关键是:down和update中对区间的更新操作是一回事,可以写成函数方便编程 //#pragma warning (disable: 4786) //#pragma comment (linker, "/STA

HDU 3016 线段树区间更新+spfa

Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1836    Accepted Submission(s): 665 Problem Description The Game “Man Down 100 floors” is an famous and interesting game.You can enjoy th

Just a Hook HDU - 1698Just a Hook HDU - 1698 线段树区间替换

#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; typedef long long ll; const int N=1e5+10; struct node{ int l,r; int sum; int add; }tr[N*4]; void pushdown(int root) { if (tr[root].add)

HDU 1698 Just a Hook (线段树,区间更新)

Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 17214    Accepted Submission(s): 8600 Problem Description In the game of DotA, Pudge’s meat hook is actually the most horrible thing f

HDU 1698 Just a Hook (线段树 区间更新基础)

Just a Hook Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 21856    Accepted Submission(s): 10963 Problem Description In the game of DotA, Pudge's meat hook is actually the most horrible thing

HDU 1698 Just a Hook (线段树区间更新)

Problem Description In the game of DotA, Pudge's meat hook is actually the most horrible thing for most of the heroes. The hook is made up of several consecutive metallic sticks which are of the same length. Now Pudge wants to do some operations on t