【大创_社区划分】——PageRank算法MapReduce实现

PageRank算法的分析和Python实现参考:http://blog.csdn.net/gamer_gyt/article/details/47443877

举例来讲

假设每个网页都有一个自己的默认PR值,相当于人为添加给它是一种属性,用来标识网页的等级或者重要性,从而依据此标识达到排名目的。假设有ID号是1的一个网页,PR值是10,假如它产生了到ID=3,ID=6,ID=8 ,ID=9这4个网页的链接。那么可以理解为ID=1的网页向ID=3,6,8,9的4个网页各贡献了2.5的PR值。如果想求任意一个网页假设其ID=3的PR值,需要得到所有的其他网页对ID=3这个网页的贡献的总和,再按照函数“所求PR”=“总和”*0.85+0.15得到。经过循环多次上述过程求得的网页PR值,可以作为网页排名的标识。

1:准备数据

理论数据是通过网页爬虫得到了某个特定封闭系统的所有网页的信息,为了测试程序,可以自己模拟生成自己定义特定格式的数据。下面是我用来测试的数据,存储方式如图

(注:对于自定义模拟数据,在PR初始值的选取时,所有的网页是“平等”的,不会说自己写的网页和Google的热门网页有多少差别,但是按照某种法则经过一定运算后PR是不一样的,比如很多其他的网页可能会链接到google,它的PR自然会比你的高。所以初始值的选取按照这种逻辑来讲符合现实些,即所有网页默认PR值相等。但是即使初始值定的不一样,整个系统的PR总和可能会变化,最后的每个网页PR也会发生变化,但是这种量之间的变化,不会影响到网页自身的通过比较大小方式上的逻辑排名。

2:MapReduce过程

map接受的数据格式默认是<偏移量,文本行>这样的<key,value>对,形如<0,1    5  2 3 4 5><20,2    10 3 5 8 9>.

目标 :将默认数据格式,转换成自定义格式<key,value>对。

已知 :hadoop框架在Map阶段的时候会自动实现sort过程,就是将相同的key的所有value保存到list,形如<key,list(1,1,1,2)>这种形式,例如上述对ID=2的网页有ID=1,6,7,8.这4个网页贡献(1.25,1,5/3,5),那么如果你采用的key是网页ID,那么hadoop框架会以此种形式<2,list(1.25,1,5/3,5)>输出,传递给reduce。

Reduce阶段:

分析:这个阶段操作就相对简单很多,读取map的输出<key,value>,并解析出来。

具体操作:把values中的数字相加即为对应id的PageRank值。

结果如下图:

代码如下

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-10 05:23:27

【大创_社区划分】——PageRank算法MapReduce实现的相关文章

【大创社区划分】——PageRank算法的解析与Python实现

一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO(^_^).PageRank算法计算每一个网页的PageRank值,然后根据这个值的大小对网页的重要性进行排序.它的思想是模拟一个悠闲的上网者,上网者首先随机选择一个网页打开,然后在这个网页上呆了几分钟后,跳转到该网页所指向的链接,这样无所事事.漫无目的地在网页上跳来跳去,PageRank就是估计这个

PageRank算法简介及Map-Reduce实现

PageRank对网页排名的算法,曾是Google发家致富的法宝.以前虽然有实验过,但理解还是不透彻,这几天又看了一下,这里总结一下PageRank算法的基本原理. 一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO(^_^).PageRank算法计算每一个网页的PageRank值,然后根据这个值的大小对网页的重要性进行排序.它的思想是模拟一个悠闲的

PageRank 算法简介

有两篇文章一篇讲解(下面copy)< PageRank算法简介及Map-Reduce实现>来源:http://www.cnblogs.com/fengfenggirl/p/pagerank-introduction.html 另一篇<PageRank简介-串讲Q&A.docx> http://docs.babel.baidu.com/doc/ee14bd65-ba71-4ebb-945b-cf279717233b PageRank对网页排名的算法,曾是Google发家致富的

pagerank算法的MapReduce实现

pagerank是一种不容易被欺骗的计算Web网页重要性的工具,pagerank是一个函数,它对Web中(或者至少是抓取并发现其中连接关系的一部分web网页)的每个网页赋予一个实数值.他的意图在于,网页 的pagerank越高,那么它就越重要.并不存在一个固定的pagerank分配算法. 对于pagerank算法的推到我在这里不想做过多的解释,有兴趣的可以自己查看资料看看,这里我直接给出某个网页pagerank的求解公式: P(n)=a/G+(1-a)*求和(P(m)/C(m))     (m属

MapReduce原理——PageRank算法Java版

Page Rank就是MapReduce的来源,下文是一个简单的计算PageRank的示例. import java.text.DecimalFormat; /**  * Created by jinsong.sun on 2014/7/15.  */ public class PageRankCaculator {     public static void main(String[] args) {         double[][] g = calcG(genS(), 0.85);  

MapReduce 之PageRank 算法概述、设计思路和源码分析

早就对PageRank 算法感兴趣,但一直都是轮廓性的概念,没有具体深入学习.最近要学习和总结MapReduce 的实例,就又把PageRank 算法重新学习了一遍,并基于MapReduce 进行了实现. 1. PageRank是什么 PageRank,网页排名,右脚网页级别.是以Google 公司创始人Larry Page 之姓来命名.PageRank 计算每一个网页的PageRank值,并根据PageRank值的大小对网页的重要性进行排序.PageRank的基本思想是:对于一个网页A来说,链

MapReduce实现PageRank算法(邻接矩阵法)

前言 之前写过稀疏图的实现方法,这次写用矩阵存储数据的算法实现,只要会矩阵相乘的话,实现这个就很简单了.如果有不懂的可以先看一下下面两篇随笔. MapReduce实现PageRank算法(稀疏图法) Python+MapReduce实现矩阵相乘 算法实现 我们需要输入两个矩阵A和B,我一开始想的是两个矩阵分别存在两个文件里然后分别读取,但是我发现好像不行,无法区分打上A.B的标签. 所以我一开始就把A.B矩阵合起来存在一个文件里,一次读取. mapper.py 1 #!/usr/bin/env

Hadoop应用开发实战(flume应用开发、搜索引擎算法、Pipes、集群、PageRank算法)

Hadoop是2013年最热门的技术之一,通过北风网robby老师<深入浅出Hadoop实战开发>.<Hadoop应用开发实战>两套课程的学习,普通Java开发人员可以在最快的时间内提升工资超过15000.成为一位完全精通Hadoop应用开发的高端人才. Hadoop是什么,为什么要学习Hadoop? Hadoop是一个分布式系统基础架构,由Apache基金会开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力高速运算和存储.Hadoop实现了一个分布式

【转】深入浅出PageRank算法

原文链接 http://segmentfault.com/a/1190000000711128 PageRank算法 PageRank算法是谷歌曾经独步天下的“倚天剑”,该算法由Larry Page和Sergey Brin在斯坦福大学读研时发明的, 论文点击下载: The PageRank Citation Ranking: Bringing Order to the Web. 本文首先通过一些参考文献引出问题,然后给出了PageRank的几种实现算法, 最后将其推广至在MapReduce框架下