1731: 矩阵
Time Limit: 3 Sec Memory Limit: 128 MB
Submit: 600 Solved: 106
Description
Input
Output
Sample Input
1
3 4 4
Q 1 1 1 1
Q 1 1 3 2
M 1 1 3
Q 1 1 3 4
Sample Output
2
21
55
HINT
Source
给定一个矩阵,和两种操作Q输出子矩阵的值,M改变一个位置的值,
朴素算法会TLE,采用容斥思想减少for的使用
1.1 | 1.2 | |||||||||||
(a-1,b-1 ) | (a-1, d) | |||||||||||
(a,b) | ||||||||||||
(c,b-1) | (c,d) | |||||||||||
不难发现,使用SUM((a,b)->(c,d))=SUM((1,1)->(c,d))-SUM((1,1)->(c,b-1))-SUM((1,1)->(a-1,d))+SUM((1,1)->(a-1,b-1));
所以我们不妨使用一个矩阵dp[i][j]表示SUM((1,1)->(i,j));
这样Q时很方便就能输出结果,M时只要更改下此点往后所有的值即可;
代码:
#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
using namespace std;
#define CIN(a) scanf("%d",&a)
int e[1005][1005],dp[1005][1005];
int main()
{
int n,m,t,i,j,Q;
char ch;
int t1,t2,t3,t4;
for(i=0;i<=100l;++i) dp[0][i]=0;
cin>>t;
while(t--){int tmp;
scanf("%d%d%d",&n,&m,&Q);
for(i=1;i<=n;++i)
for(j=1;j<=m;++j) e[i][j]=i+j;
for(i=1;i<=n;++i){tmp=0;
for(j=1;j<=m;++j){
tmp+=e[i][j];
dp[i][j]=dp[i-1][j]+tmp;
}
}
while(Q--){
scanf(" %c%d%d%d",&ch,&t1,&t2,&t3);
if(ch==‘M‘){
for(i=t1;i<=n;++i)
for(j=t2;j<=m;++j)
dp[i][j]=dp[i][j]-e[t1][t2]+t3;
e[t1][t2]=t3;
}
else if(ch==‘Q‘){CIN(t4);
printf("%d\n",dp[t3][t4]+dp[t1-1][t2-1]-dp[t1-1][t4]-dp[t3][t2-1]);
}
}
}
return 0;
}