zzuli1731 矩阵(容斥)

1731: 矩阵

Time Limit: 3 Sec  Memory Limit: 128 MB
Submit: 600  Solved: 106

SubmitStatusWeb Board

Description

Input

Output

Sample Input

1
3 4 4
Q 1 1 1 1
Q 1 1 3 2
M 1 1 3
Q 1 1 3 4

Sample Output

2
21
55

HINT

Source

给定一个矩阵,和两种操作Q输出子矩阵的值,M改变一个位置的值,

朴素算法会TLE,采用容斥思想减少for的使用

1.1 1.2                      
                         
                         
                         
                                                (a-1,b-1 )                                     (a-1, d)                 
            (a,b)            
                         
                         
                                                   
                               
                         
          (c,b-1)         (c,d)    
                       

不难发现,使用SUM((a,b)->(c,d))=SUM((1,1)->(c,d))-SUM((1,1)->(c,b-1))-SUM((1,1)->(a-1,d))+SUM((1,1)->(a-1,b-1));

所以我们不妨使用一个矩阵dp[i][j]表示SUM((1,1)->(i,j));

这样Q时很方便就能输出结果,M时只要更改下此点往后所有的值即可;

代码:

#include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
using namespace std;
#define CIN(a) scanf("%d",&a)
int e[1005][1005],dp[1005][1005];
int main()
{
int n,m,t,i,j,Q;
char ch;
int t1,t2,t3,t4;
for(i=0;i<=100l;++i) dp[0][i]=0;
cin>>t;
while(t--){int tmp;
scanf("%d%d%d",&n,&m,&Q);
for(i=1;i<=n;++i)
for(j=1;j<=m;++j) e[i][j]=i+j;
for(i=1;i<=n;++i){tmp=0;
for(j=1;j<=m;++j){
tmp+=e[i][j];
dp[i][j]=dp[i-1][j]+tmp;
}
}
while(Q--){
scanf(" %c%d%d%d",&ch,&t1,&t2,&t3);
if(ch==‘M‘){
for(i=t1;i<=n;++i)
for(j=t2;j<=m;++j)
dp[i][j]=dp[i][j]-e[t1][t2]+t3;
e[t1][t2]=t3;
}
else if(ch==‘Q‘){CIN(t4);
printf("%d\n",dp[t3][t4]+dp[t1-1][t2-1]-dp[t1-1][t4]-dp[t3][t2-1]);
}

}
}
return 0;
}

时间: 2024-10-12 17:07:08

zzuli1731 矩阵(容斥)的相关文章

HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)

传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少种项链. 分析:这是我做过的最为综合的一道题目(太渣了),首先数位dp筛选出区间[L,R]内的幸运数字总数,dp[pos]表示非限制条件下还有pos位含有的幸运数字个数,然后记忆化搜索一下,随便乱搞的(直接dfs不知会不会超时,本人做法900+ms险过,应该直接dfs会超时),再不考虑旋转相同的情况,可以

loj#6072 苹果树(折半搜索,矩阵树定理,容斥)

loj#6072 苹果树(折半搜索,矩阵树定理,容斥) loj 题解时间 $ n \le 40 $ . 无比精确的数字. 很明显只要一个方案不超过 $ limits $ ,之后的计算就跟选哪个没关系了. 折半搜索排序来统计有i个果子是有用的情况下的方案数. 然后矩阵树求生成树个数,容斥乱搞. #include<bits/stdc++.h> using namespace std; template<typename TP>inline void read(TP &tar)

bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都属于不同公司就很难直接实现. 按套路上容斥: 如果直接将几个公司的修路列表加进矩阵里的话,求出来的是"只使用"这些边的生成树个数. 很明显上容斥之后就会直接变成"只使用"且"每个都被使用"的个数. 正好符合题目要求的生成树的n-1条边分属于n-1个公

Codeforces 611C New Year and Domino DP+容斥

"#"代表不能放骨牌的地方,"."是可以放 500*500的矩阵,q次询问 开两个dp数组,a,b,a统计横着放的方案数,b表示竖着放,然后询问时O(1)的,容斥一下, 复杂度O(n^2+q) #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<cstdlib> #include<cmat

HDU 4059 The Boss on Mars-矩阵+容斥

错了29遍,终成正果..... 根据题意,很容易的可以想到容斥. 然后的问题就是如何求 sum(n)=1^4+2^4+3^4+....+n^4; 有三种道路: 很显然:1^4+2^4+3^4+....+n^4=(n^5)/5+(n^4)/2+(n^3)/3-n/30: 则1,用java的大数去敲这个的代码. 2,用c++敲,但是用到分数取模,求逆元. 3,用c++敲,但是不用这个公式,用矩阵去构造sum(n). 我用的是第三种.但是第三种有的缺陷,就是时间复杂度有点高. 接下来的问题就是如何优化

HDU 5768 Lucky7 (中国剩余定理+容斥)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5768 给你n个同余方程组,然后给你l,r,问你l,r中有多少数%7=0且%ai != bi. 比较明显的中国剩余定理+容斥,容斥的时候每次要加上个(%7=0)这一组. 中间会爆longlong,所以在其中加上个快速乘法(类似矩阵快速幂).因为普通的a*b是直接a个b相加,很可能会爆.但是你可以将b拆分为二进制来加a,这样又快又可以防爆. 1 //#pragma comment(linker, "/S

2669[cqoi2012]局部极小值 容斥+状压dp

2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 774  Solved: 411[Submit][Status][Discuss] Description 有一个n行m列的整数矩阵,其中1到nm之间的每个整数恰好出现一次.如果一个格子比所有相邻格子(相邻是指有公共边或公共顶点)都小,我们说这个格子是局部极小值. 给出所有局部极小值的位置,你的任务是判断有多少个可能的矩阵. Input 输入第一行包含两个整数

组队赛Day1第一场 GYM 101350 G - Snake Rana (容斥)

[题意] 给一个N×M的矩阵, K个地雷的坐标.求不含地雷的所有矩形的总数. T组数据. N M都是1e4,地雷数 K ≤ 20 Input 3 2 2 1 2 2 6 6 2 5 2 2 5 10000 10000 1 1 1 Output 5 257 2500499925000000 [分析] daola :这个题容斥搞一搞. 我 : ??? 合法矩形数肯定是很难算的.但是不合法的矩形数却很好算.所以就是用所有的矩形数减去不合法的矩形数就是答案. K是20的,所以可以用一个20位的整数枚举状

UVA 11806 组合数学+容斥

UVA: https://vjudge.net/problem/UVA-11806 题意:给你一个n×mn×m的矩阵网格和kk个人,问有多少种方法使得每一个格子只放一个人,并且第一行,最后一行,第一列,最后一列都有人.直接枚举似乎有难度,我们考虑容斥.rr行cc列放kk个人的方案数是(r×ck)(r×ck),那么由容斥原理,总方案为 ans=U?A?B?C?D+AB+AC+AD+-+ABCDans=U?A?B?C?D+AB+AC+AD+-+ABCD 其中UU表示没有限制的方案数,A,B,C,DA