ZOJ1081 Points Within 点和多边形的位置关系

ZOJ1081

给一个点和一个多边形 判断点在多边形内(边上)还是在多边形外

在多边形外的点引一条射线必然穿过多边形的两条边

而在多边形内的点则不一定。

当然凹多边形有特殊情况 但是总能找到对应位置关系的边来抵消

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;

const double eps=1e-9;

int cmp(double x)
{
 if(fabs(x)<eps)return 0;
 if(x>0)return 1;
 	else return -1;
}

const double pi=acos(-1.0);

inline double sqr(double x)
{
 return x*x;
}

struct point
{
 double x,y;
 point (){}
 point (double a,double b):x(a),y(b){}
 void input()
 	{
 	 scanf("%lf%lf",&x,&y);
	}
 friend point operator +(const point &a,const point &b)
 	{
 	 return point(a.x+b.x,a.y+b.y);
	}
 friend point operator -(const point &a,const point &b)
 	{
 	 return point(a.x-b.x,a.y-b.y);
	}
 friend bool operator ==(const point &a,const point &b)
 	{
 	 return cmp(a.x-b.x)==0&&cmp(a.y-b.y)==0;
	}
 friend point operator *(const point &a,const double &b)
 	{
 	 return point(a.x*b,a.y*b);
	}
 friend point operator*(const double &a,const point &b)
 	{
 	 return point(a*b.x,a*b.y);
	}
 friend point operator /(const point &a,const double &b)
 	{
 	 return point(a.x/b,a.y/b);
	}
 double norm()
 	{
 	 return sqrt(sqr(x)+sqr(y));
	}
};

struct line
{
 point a,b;
 line(){};
 line(point x,point y):a(x),b(y)
 {

 }
};
double det(const point &a,const point &b)
{
 return a.x*b.y-a.y*b.x;
}

double dot(const point &a,const point &b)
{
 return a.x*b.x+a.y*b.y;
}

double dist(const point &a,const point &b)
{
 return (a-b).norm();
}

point rotate_point(const point &p,double A)
{
 double tx=p.x,ty=p.y;
 return point(tx*cos(A)-ty*sin(A),tx*sin(A)+ty*cos(A));
}

bool parallel(line a,line b)
{
 return !cmp(det(a.a-a.b,b.a-b.b));
}

bool line_joined(line a,line b,point &res)
{
 if(parallel(a,b))return false;
 double s1=det(a.a-b.a,b.b-b.a);
 double s2=det(a.b-b.a,b.b-b.a);
 res=(s1*a.b-s2*a.a)/(s1-s2);
 return true;
}

bool pointonSegment(point p,point s,point t)
{
 return cmp(det(p-s,t-s))==0&&cmp(dot(p-s,p-t))<=0;
}

void PointProjLine(const point p,const point s,const point t,point &cp)
{
 double r=dot((t-s),(p-s))/dot(t-s,t-s);
 cp=s+r*(t-s);
}

struct polygon_convex
{
 vector<point>P;
 polygon_convex(int Size=0)
 	{
 	 P.resize(Size);
	}
};

bool comp_less(const point &a,const point &b)
{
 return cmp(a.x-b.x)<0||cmp(a.x-b.x)==0&&cmp(a.y-b.y)<0;

}

polygon_convex convex_hull(vector<point> a)
{
 polygon_convex res(2*a.size()+5);
 sort(a.begin(),a.end(),comp_less);
 a.erase(unique(a.begin(),a.end()),a.end());//删去重复点
 int m=0;
 for(int i=0;i<a.size();i++)
 	{
 	 while(m>1&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
 	 res.P[m++]=a[i];
	}
 int k=m;
 for(int i=int(a.size())-2;i>=0;--i)
 	{
 	 while(m>k&&cmp(det(res.P[m-1]-res.P[m-2],a[i]-res.P[m-2]))<=0)--m;
 	 res.P[m++]=a[i];
	}
 res.P.resize(m);
 if(a.size()>1)res.P.resize(m-1);
 return res;
}

bool is_convex(vector<point> &a)
{
 for(int i=0;i<a.size();i++)
 	{
 	 int i1=(i+1)%int(a.size());
 	 int i2=(i+2)%int(a.size());
 	 int i3=(i+3)%int(a.size());
 	 if((cmp(det(a[i1]-a[i],a[i2]-a[i1]))*cmp(det(a[i2]-a[i1],a[i3]-a[i2])))<0)
	  	return false;
	}
 return true;
}
int containO(const polygon_convex &a,const point &b)
{
 int n=a.P.size();
 point g=(a.P[0]+a.P[n/3]+a.P[2*n/3])/3.0;
 int l=0,r=n;
 while(l+1<r)
 	{
 	 int mid=(l+r)/2;
 	 if(cmp(det(a.P[l]-g,a.P[mid]-g))>0)
 	 	{
 	 	 if(cmp(det(a.P[l]-g,b-g))>=0&&cmp(det(a.P[mid]-g,b-g))<0)r=mid;
 	 	 	else l=mid;
		}else
			{
			 if(cmp(det(a.P[l]-g,b-g))<0&&cmp(det(a.P[mid]-g,b-g))>=0)l=mid;
 	 	 		else r=mid;
			}
	}
 r%=n;
 int z=cmp(det(a.P[r]-b,a.P[l]-b))-1;
 if(z==-2)return 1;
 return z;
}

bool circle_in_polygon(point cp,double r,polygon_convex &pol)
{

 polygon_convex pp=convex_hull(pol.P);
 if(containO(pp,cp)!=1)return false;
 for(int i=0;i<pol.P.size();i++)
 	{
 	 int j;
 	 if(i<pol.P.size()-1)j=i+1;
 	 	else j=0;
 	 point prol;
 	 PointProjLine(cp,pol.P[i],pol.P[j],prol);
 	 double dis;
 	 if(pointonSegment(prol,pol.P[i],pol.P[j]))dis=dist(prol,cp);
 	 	else dis=min(dist(cp,pol.P[i]),dist(pol.P[j],cp));
 	 if(cmp(dis-r)==-1)return false;
	}
 return true;
}

const int maxn=1e+6;

point po[maxn+10];

double area(point a[],int n)
{
 double sum=0;
 a[n]=a[0];
 for(int i=0;i<n;i++)
 	sum+=det(a[i+1],a[i]);
 	return sum/2.;
}

int Point_in(point a[],int n,point t)
{
 int num=0,i,d1,d2,k;
 a[n]=a[0];
 for(int i=0;i<n;i++)
 	{
 	 if(pointonSegment(t,a[i],a[i+1]))return 2;
 	 k=cmp(det(a[i+1]-a[i],t-a[i]));
 	 d1=cmp(a[i].y-t.y);
 	 d2=cmp(a[i+1].y-t.y);
 	 if(k>0&&d1<=0&&d2>0)num++;
 	 if(k<0&&d2<=0&&d1>0)num--;
	}
 return num!=0;
}

point pp[100];
int main()
{freopen("t.txt","r",stdin);
 int n,m;
 int tot=1;
 while(scanf("%d",&n)&&n>0)
 	{
 	 if(tot>1)printf("\n");
 	 printf("Problem %d:\n",tot++);
 	 scanf("%d",&m);
 	 for(int i=0;i<n;i++)
 	 	pp[i].input();
 	 point t;
 	 for(int i=0;i<m;i++)
 	    {
		 t.input();
		 int ans=Point_in(pp,n,t);
		 if(ans>0)printf("Within\n");
		 	else printf("Outside\n");
		}
	}
 return 0;
}

  

时间: 2024-10-09 23:02:51

ZOJ1081 Points Within 点和多边形的位置关系的相关文章

LightOj1190 - Sleepwalking(判断点与多边形的位置关系--射线法模板)

题目链接:http://lightoj.com/volume_showproblem.php?problem=1190 题意:给你一个多边形含有n个点:然后又m个查询,每次判断点(x, y)是否在多边形的内部; 射线法判断即可适用于任何(凸或凹)多边形;时间复杂度为O(n); 判断一个点是在多边形内部,边上还是在外部,时间复杂度为O(n):射线法可以正确用于凹多边形: 射线法是使用最广泛的算法,这是由于相比较其他算法而言,它不但可以正确使用在凹多边形上,而且不需要考虑精度误差问题.该算法思想是从

Cupid&#39;s Arrow---hdu1756(判断点与多边形的位置关系 模板)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1756 题意:中文题,套模板即可: /* 射线法:判断一个点是在多边形内部,边上还是在外部,时间复杂度为O(n): 射线法可以正确用于凹多边形: 射线法是使用最广泛的算法,这是由于相比较其他算法而言,它不但可以正 确使用在凹多边形上,而且不需要考虑精度误差问题.该算法思想是从点出 发向右水平做一条射线,计算该射线与多边形的边的相交点个数,当点不在 多边形边上时,如果是奇数,那么点就一定在多边形内部,否

计算几何线,点,多边形,位置关系较全模板

const double eps = 1e-6; int sgn(double x) { if(fabs(x) < eps)return 0; if(x < 0)return -1; else return 1; } struct Point { double x,y; Point(){} Point(double _x,double _y) { x = _x;y = _y; } Point operator -(const Point &b)const { return Point(

UVA 10256 The Great Divide (凸包,多边形的位置关系)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=34148 [思路] 凸包 求出红蓝点的凸包,剩下的问题就是判断两个凸包是否相离. 需要确定两点: 1)  凸包上线段是否相交->相交 2)  凸包上的点是否包含在另一个凸包里->内含. [代码] 1 #include<cmath> 2 #include<vector> 3 #include<cstdio> 4 #include&

ZOJ1081 Points Within

PS: 判断点是否在多边形内,用的绕圈法,具体参见刘汝佳的训练指南. #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <vector> #include <cmath> using namespace std; struct point { int x, y; point(double x=0, double

POJ1269_Intersecting Lines(几何/叉积判断直线位置关系)

解题报告 题目传送门 题意: 判断直线的位置关系(平行,重合,相交) 思路: 两直线可以用叉积来判断位置关系. AB直线和CD直线 平行的话端点C和端点D会在直线AB的同一侧. 重合的话在直线AB上. 剩下就是相交. 求两直线交点可以用面积比和边长比来求. 看下面的图就知道了,推导就比较容易了 #include <iostream> #include <cstring> #include <cstdio> #define eps 1e-6 #define zero(x)

计算几何问题汇总--点与线的位置关系

点与点之间, 线与线之间,点与线之间的位置关系是一类非常重要的问题.它不仅是平面几何学的基石,也常常应用于LBS(Location Based Service),社交网络,以及数据库查询等领域. 本文中,我将给出判断这些关系的相关算法,作为参考.需要说明的是,我给出的这些问题的解法,都是建立在二维平面空间之上.有关多维空间的位置关系,大家可以仿照二维空间中问题的思路,做相应的拓展. 语言上,我用的当然还是Python. 点与点之间的距离 先从最简单的点与点的位置关系说起.一般情况下,我们只关心点

POJ 1269 Intersecting Lines (判断直线位置关系)

题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line becau

通过setSystemUiVisibility实现状态栏跟Activity之间的位置关系

以前说到去除状态栏和标题栏总会用到动态代码的方式实现: getWindow().setFlags(WindowManager.LayoutParams. FLAG_FULLSCREEN , WindowManager.LayoutParams. FLAG_FULLSCREEN); requestWindowFeature(Window.FEATURE_NO_TITLE); 但是在项目开发中,在收集资料时突然找到了一个很好用的API,这个API是 setSystemUiVisibility();