搜索引擎选择: Elasticsearch与Solr(转载)

原文地址:http://www.cnblogs.com/chowmin/articles/4629220.html

搜索引擎选型调研文档

Elasticsearch简介*

Elasticsearch是一个实时的分布式搜索和分析引擎。它可以帮助你用前所未有的速度去处理大规模数据。

它可以用于全文搜索,结构化搜索以及分析,当然你也可以将这三者进行组合。

Elasticsearch是一个建立在全文搜索引擎 Apache Lucene? 基础上的搜索引擎,可以说Lucene是当今最先进,最高效的全功能开源搜索引擎框架。

但是Lucene只是一个框架,要充分利用它的功能,需要使用JAVA,并且在程序中集成Lucene。需要很多的学习了解,才能明白它是如何运行的,Lucene确实非常复杂。

Elasticsearch使用Lucene作为内部引擎,但是在使用它做全文搜索时,只需要使用统一开发好的API即可,而不需要了解其背后复杂的Lucene的运行原理。

当然Elasticsearch并不仅仅是Lucene这么简单,它不但包括了全文搜索功能,还可以进行以下工作:

这么多的功能被集成到一台服务器上,你可以轻松地通过客户端或者任何你喜欢的程序语言与ES的RESTful API进行交流。

Elasticsearch的上手是非常简单的。它附带了很多非常合理的默认值,这让初学者很好地避免一上手就要面对复杂的理论,

它安装好了就可以使用了,用很小的学习成本就可以变得很有生产力。

随着越学越深入,还可以利用Elasticsearch更多高级的功能,整个引擎可以很灵活地进行配置。可以根据自身需求来定制属于自己的Elasticsearch。

使用案例:

但是Elasticsearch并不只是面向大型企业的,它还帮助了很多类似DataDog以及Klout的创业公司进行了功能的扩展。

Elasticsearch的优缺点**:

优点

  1. Elasticsearch是分布式的。不需要其他组件,分发是实时的,被叫做"Push replication"。
  2. Elasticsearch 完全支持 Apache Lucene 的接近实时的搜索。
  3. 处理多租户(multitenancy)不需要特殊配置,而Solr则需要更多的高级设置。
  4. Elasticsearch 采用 Gateway 的概念,使得完备份更加简单。
  5. 各节点组成对等的网络结构,某些节点出现故障时会自动分配其他节点代替其进行工作。

缺点

  1. 只有一名开发者(当前Elasticsearch GitHub组织已经不只如此,已经有了相当活跃的维护者)
  2. 还不够自动(不适合当前新的Index Warmup API)

Solr简介*

Solr(读作"solar")是Apache Lucene项目的开源企业搜索平台。其主要功能包括全文检索、命中标示、分面搜索、动态聚类、数据库集成,以及富文本(如Word、PDF)的处理。Solr是高度可扩展的,并提供了分布式搜索和索引复制。Solr是最流行的企业级搜索引擎,Solr4 还增加了NoSQL支持。

Solr是用Java编写、运行在Servlet容器(如 Apache Tomcat 或Jetty)的一个独立的全文搜索服务器。 Solr采用了 Lucene Java 搜索库为核心的全文索引和搜索,并具有类似REST的HTTP/XML和JSON的API。Solr强大的外部配置功能使得无需进行Java编码,便可对
其进行调整以适应多种类型的应用程序。Solr有一个插件架构,以支持更多的高级定制。

因为2010年 Apache Lucene 和 Apache Solr 项目合并,两个项目是由同一个Apache软件基金会开发团队制作实现的。提到技术或产品时,Lucene/Solr或Solr/Lucene是一样的。

Solr的优缺点

优点

  1. Solr有一个更大、更成熟的用户、开发和贡献者社区。
  2. 支持添加多种格式的索引,如:HTML、PDF、微软 Office 系列软件格式以及 JSON、XML、CSV 等纯文本格式。
  3. Solr比较成熟、稳定。
  4. 不考虑建索引的同时进行搜索,速度更快。

缺点

  1. 建立索引时,搜索效率下降,实时索引搜索效率不高。

Elasticsearch与Solr的比较*

当单纯的对已有数据进行搜索时,Solr更快。

当实时建立索引时, Solr会产生io阻塞,查询性能较差, Elasticsearch具有明显的优势。

随着数据量的增加,Solr的搜索效率会变得更低,而Elasticsearch却没有明显的变化。

综上所述,Solr的架构不适合实时搜索的应用。

实际生产环境测试*

下图为将搜索引擎从Solr转到Elasticsearch以后的平均查询速度有了50倍的提升。

Elasticsearch 与 Solr 的比较总结

Solr 是传统搜索应用的有力解决方案,但 Elasticsearch 更适用于新兴的实时搜索应用。

其他基于Lucene的开源搜索引擎解决方案*

  1. 直接使用Lucene

说明:Lucene 是一个 JAVA 搜索类库,它本身并不是一个完整的解决方案,需要额外的开发工作。

优点:成熟的解决方案,有很多的成功案例。apache 顶级项目,正在持续快速的进步。庞大而活跃的开发社区,大量的开发人员。它只是一个类库,有足够的定制和优化空间:经过简单定制,就可以满足绝大部分常见的需求;经过优化,可以支持 10亿+ 量级的搜索。

缺点:需要额外的开发工作。所有的扩展,分布式,可靠性等都需要自己实现;非实时,从建索引到可以搜索中间有一个时间延迟,而当前的"近实时"(Lucene Near Real Time search)搜索方案的可扩展性有待进一步完善

说明:基于 Lucene 的,支持分布式,可扩展,具有容错功能,准实时的搜索方案。

优点:开箱即用,可以与 Hadoop 配合实现分布式。具备扩展和容错机制。

缺点:只是搜索方案,建索引部分还是需要自己实现。在搜索功能上,只实现了最基本的需求。成功案例较少,项目的成熟度稍微差一些。因为需要支持分布式,对于一些复杂的查询需求,定制的难度会比较大。

说明:Map/Reduce 模式的,分布式建索引方案,可以跟 Katta 配合使用。

优点:分布式建索引,具备可扩展性。

缺点:只是建索引方案,不包括搜索实现。工作在批处理模式,对实时搜索的支持不佳。

说明:基于 Lucene 的一系列解决方案,包括
准实时搜索 zoie ,facet 搜索实现 bobo ,机器学习算法 decomposer ,摘要存储库 krati ,数据库模式包装 sensei 等等

优点:经过验证的解决方案,支持分布式,可扩展,丰富的功能实现

缺点:与 linkedin 公司的联系太紧密,可定制性比较差

说明:基于 Lucene,索引存在 cassandra 数据库中

优点:参考 cassandra 的优点

缺点:参考 cassandra 的缺点。另外,这只是一个 demo,没有经过大量验证

说明:基于 Lucene,索引存在 HBase 数据库中

优点:参考 HBase 的优点

缺点:参考 HBase 的缺点。另外,在实现中,lucene terms 是存成行,但每个 term 对应的 posting lists 是以列的方式存储的。随着单个 term 的 posting lists 的增大,查询时的速度受到的影响会非常大

时间: 2024-10-04 13:37:30

搜索引擎选择: Elasticsearch与Solr(转载)的相关文章

全文搜索引擎选 ElasticSearch 还是 Solr?

最近项目组安排了一个任务,项目中用到了基于 Solr 的全文搜索,但是该 Solr 搜索云项目不稳定,经常查询不出来数据,需要手动全量同步. 而且它还是其他团队在维护,依赖性太强,导致 Solr 服务一出问题,我们的项目也基本瘫痪,因为所有的依赖查询都无结果数据了. 所以考虑开发一个适配层,如果 Solr 搜索出问题,自动切换到新的搜索 ES.其实可以通过 Solr 集群或者服务容错等设计来解决该问题. 但是先不考虑本身设计的合理性,领导需要开发,所以我开始踏上了搭建 ES 服务的道路,从零开始

全文检索选择-------- Elasticsearch与Solr

Elasticsearch简介* Elasticsearch是一个实时的分布式搜索和分析引擎.它可以帮助你用前所未有的速度去处理大规模数据. 它可以用于全文搜索,结构化搜索以及分析,当然你也可以将这三者进行组合. Elasticsearch是一个建立在全文搜索引擎 Apache Lucene™ 基础上的搜索引擎,可以说Lucene是当今最先进,最高效的全功能开源搜索引擎框架. 但是Lucene只是一个框架,要充分利用它的功能,需要使用JAVA,并且在程序中集成Lucene.需要很多的学习了解,才

搜索引擎选择: Elasticsearch与Solr

搜索引擎选型调研文档 Elasticsearch简介* Elasticsearch是一个实时的分布式搜索和分析引擎.它可以帮助你用前所未有的速度去处理大规模数据. 它可以用于全文搜索,结构化搜索以及分析,当然你也可以将这三者进行组合. Elasticsearch是一个建立在全文搜索引擎 Apache Lucene™ 基础上的搜索引擎,可以说Lucene是当今最先进,最高效的全功能开源搜索引擎框架. 但是Lucene只是一个框架,要充分利用它的功能,需要使用JAVA,并且在程序中集成Lucene.

Java搜索引擎选择: Elasticsearch与Solr(转)

Elasticsearch简介 Elasticsearch是一个实时的分布式搜索和分析引擎.它可以帮助你用前所未有的速度去处理大规模数据. 它可以用于全文搜索,结构化搜索以及分析,当然你也可以将这三者进行组合. Elasticsearch是一个建立在全文搜索引擎 Apache Lucene™ 基础上的搜索引擎,可以说Lucene是当今最先进,最高效的全功能开源搜索引擎框架. 但是Lucene只是一个框架,要充分利用它的功能,需要使用JAVA,并且在程序中集成Lucene.需要很多的学习了解,才能

全文搜索引擎 ElasticSearch 还是 Solr?

最近项目组安排了一个任务,项目中用到了全文搜索,基于全文搜索 Solr,但是该 Solr 搜索云项目不稳定,经常查询不出来数据,需要手动全量同步,而且是其他团队在维护,依赖性太强,导致 Solr 服务一出问题,我们的项目也基本瘫痪,因为所有的依赖查询都无结果数据了.所以考虑开发一个适配层,如果 Solr 搜索出问题,自动切换到新的搜索--ES. 其实可以通过 Solr 集群或者服务容错等设计来解决该问题.但是先不考虑本身设计的合理性,领导需要开发,所以我开始踏上了搭建 ES 服务的道路,从零开始

Elasticsearch和solr之我为什么选择solr

老大:这个项目需要用到搜索引擎,小李你去学习一下. 小李:喳! 小李:以前用过的搜索引擎是solr4.7,那已经是两年前使用的了不知道现在有没有更好的解决方案了呢? 小李打开了google,百度,bing一阵巴拉巴拉...... 小李:唔~适合项目的搜索引擎有elasticsearch,solr先分别看看他们的优劣势吧. 经过查阅前辈a的相关博客,里面有几张图如下: 小李:看来旗鼓相当,各有优势呀. 相关博客:别急还有呢. Solr:客官常来玩呀~ 小李:别说了我的心是Elasticsearch

ElasticSearch和solr的差别

Elasticsearch简介 Elasticsearch是一个实时分布式搜索和分析引擎.它让你以前所未有的速度处理大数据成为可能.它用于全文搜索.结构化搜索.分析以及将这三者混合使用:维基百科使用Elasticsearch提供全文搜索并高亮关键字,以及输入实时搜索(search-asyou-type)和搜索纠错(did-you-mean)等搜索建议功能.英国卫报使用Elasticsearch结合用户日志和社交网络数据提供给他们的编辑以实时的反馈,以便及时了解公众对新发表的文章的回应.Stack

下载快速上手数据挖掘之solr搜索引擎高级教程(Solr集群、KI分词、项目实战)

Solr是一个高性能,采用Java开发,基于Lucene的全文搜索服务器.同时对其进行了扩展,提供了比Lucene更为丰富的查询语言,同时实现了可配置.可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面,是一款非常优秀的全文搜索引擎. 快速上手数据挖掘之solr搜索引擎高级教程(Solr集群.KI分词.项目实战),刚刚入手,转一注册文件,视频的确不错,可以先下载看看:http://pan.baidu.com/s/1jIdgtWM 密码:s1t3

比较实时分布式搜索引擎(senseidb、Solr、elasticsearch)

1.它们是基于lucene的. 2.它们分布:sensedb它是multi-write;Solr的shards它是master-slave状态.基于pull策略:elasticsearch的shards它是基于primary-secondary状态,push战术: 3.senseidb他专注于实时:Solr稳定性被广泛用于:elasticsearch更灵活 版权声明:本文博主原创文章,博客,未经同意不得转载.