OpenGL中的Shader

http://blog.csdn.net/huangcanjun187/article/details/52474365

学习总结自:http://learnopengl.com/#!Getting-started/Hello-Triangle 
http://learnopengl.com/#!Getting-started/Shaders 
继上篇文章中提到,OpenGL是为了在GPU上同时跑成千上万个程序,在GPU上跑的这些小程序,称为Shader。

准备

我们在运行GPU程序前,得准备几样东西:1)输入数据。2)数据缓冲区。3)Shader程序。4)GLSL(OpenGL Shade Language)主程序。 
以画一个三角形为例, 
1)输入数据包括:a. 三点顶点的坐标。b. 三个顶点的颜色。

  GLfloat vertices[] = {
        // 坐标        // 颜色
         0.5f, -0.5f, 0.0f,  1.0f, 0.0f, 0.0f,  // 右下角
        -0.5f, -0.5f, 0.0f,  0.0f, 1.0f, 0.0f,  // 左下角
         0.0f,  0.5f, 0.0f,  0.0f, 0.0f, 1.0f   // 顶点
    };
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

2)数据缓存区包括:a. 数据怎么识别。哪一块是坐标数据?哪一块是颜色数据? b. 哪一块数据是第一个三角形的数据?哪一块数据是第二个三角形的数据?

 GLuint VBO, VAO;
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);
    glBindVertexArray(VAO);// 首先绑定VAO结构。一个VAO对应一个形状对象,包含了一个形状的所有属性,包括颜色、坐标等等。用shader程序调用VAO这个结构,可以画出对应的图像来。

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);//在绑定VAO之后,绑定VBO结构。**这样VBO就属于之前被绑定VAO的一部分。**里面包含了预先定义好的数组vertices,vertices就是一个浮点数组,包含具体的坐标、颜色值。

    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);
    glEnableVertexAttribArray(0);// 坐标属性。让Vertex Shader将这部分数据作为坐标导入。

    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));
    glEnableVertexAttribArray(1);// 颜色属性。让Vertex Shader将这部分数据作为坐标颜色值导入。

    glBindVertexArray(0); // Unbind VAO
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

3)Shader 程序。将导入GPU的数据,为对应的坐标点画上对应的颜色。

// Shaders
const GLchar* vertexShaderSource = "#version 330 core\n"
    "layout (location = 0) in vec3 position;\n"//location = 0,与之前绑定VAO步骤中的函数glEnableVertexAttribArray(0)对应,把坐标数据导入到 vec3 position 这个shader中的坐标变量。
    "layout (location = 1) in vec3 color;\n"//location = 1,与之前绑定VAO步骤中的函数glEnableVertexAttribArray(1)对应,把坐标数据导入到 vec3 color这个shader中的颜色变量。
    "out vec3 ourColor;\n"
    "void main()\n"
    "{\n"
    "gl_Position = vec4(position, 1.0);\n"
    "ourColor = color;\n"//将颜色值直接赋值给输出的变量ourColor,在Fragment Shader中也有一个同名的变量,所有最终像素的颜色就是此颜色值。
    "}\0";
const GLchar* fragmentShaderSource = "#version 330 core\n"
    "in vec3 ourColor;\n" //OpenGL Shader程序会直接将同名的变量联系到一起,这个ourColor就是vertex shader中的输出的ourColor
    "out vec4 color;\n"
    "void main()\n"
    "{\n"
    "color = vec4(ourColor, 1.0f);\n"
    "}\n\0";
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

4)GLSL 主程序

 GLuint shaderProgram = glCreateProgram(); //创建一个GLSL主程序
    glAttachShader(shaderProgram, vertexShader);
    glAttachShader(shaderProgram, fragmentShader);//将两个shader挂载到主程序上
    glLinkProgram(shaderProgram);//链接shader程序。编译shader的步骤在此之前。接下来会详细介绍
  • 1
  • 2
  • 3
  • 4
  • 1
  • 2
  • 3
  • 4

步骤

为何要将1)输入数据。2)数据缓冲区。3)Shader程序。4)GLSL(OpenGL Shade Language)主程序。这个几个模块分开介绍呢? 
因为这几块相互独立,这是OpenGL比较明显的特点。详细说,就是GLSL主程序可以链接任意一个编译好的shader程序,编译好的shader程序可以装载不同的VAO(Vertext Array Object,它是VBO的老大,Shader 调用的时候是直接调VAO,VBO包含了数据,VAO包含了VBO以及如何让Shader识别这些VBO数据的一些属性),VAO又可以用不同的方式装载不同的数据。 
以这段代码为例,只粘贴了比较关键的代码,完整源码请参考: 
http://learnopengl.com/code_viewer.php?code=getting-started/shaders-interpolated 
程序的结果就是对三角形的三个顶点画上红、绿、蓝三种颜色,三角形中间区域的颜色OpenGL会自动插值出来,这是OpenGL的神奇之处(我也还没懂原理)。 

//--------------这不是完整源码,着重介绍重要的几个步骤------------------//

//---------编写shader 程序----------//
const GLchar* vertexShaderSource = "#version 330 core\n"
    "layout (location = 0) in vec3 position;\n"
    "layout (location = 1) in vec3 color;\n"
    "out vec3 ourColor;\n"
    "void main()\n"
    "{\n"
    "gl_Position = vec4(position, 1.0);\n"
    "ourColor = color;\n"
    "}\0";
const GLchar* fragmentShaderSource = "#version 330 core\n"
    "in vec3 ourColor;\n"
    "out vec4 color;\n"
    "void main()\n"
    "{\n"
    "color = vec4(ourColor, 1.0f);\n"
    "}\n\0";//简单易懂的Shader源码

//---------编译和链接shader程序----------//
GLuint vertexShader = glCreateShader(GL_VERTEX_SHADER);
    glShaderSource(vertexShader, 1, &vertexShaderSource, NULL);
    glCompileShader(vertexShader); //因为shader程序是在GPU上跑,所以不是和CPP文件一起编译。Shader程序如果有BUG,在编译CPP的时候不会出错,而是在运行CPP工程的时候报错。

 GLuint fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
    glShaderSource(fragmentShader, 1, &fragmentShaderSource, NULL);
    glCompileShader(fragmentShader);

 GLuint shaderProgram = glCreateProgram();
    glAttachShader(shaderProgram, vertexShader);
    glAttachShader(shaderProgram, fragmentShader);
    glLinkProgram(shaderProgram); //将shader程序与GLSL主程序链接到一起

//---------编写VAO,VBO以及具体导入的数据----------//
 GLfloat vertices[] = {
        // Positions         // Colors
         0.5f, -0.5f, 0.0f,  1.0f, 0.0f, 0.0f,  // Bottom Right
        -0.5f, -0.5f, 0.0f,  0.0f, 1.0f, 0.0f,  // Bottom Left
         0.0f,  0.5f, 0.0f,  0.0f, 0.0f, 1.0f   // Top
    };//三个顶点的坐标和颜色值

    GLuint VBO, VAO;
    glGenVertexArrays(1, &VAO);
    glGenBuffers(1, &VBO);//可以生成多个VAO和多个VBO。一个只能对应一个VBO。画多个图形,就得用不同的VAO包含不同的VBO
    glBindVertexArray(VAO);//绑定VAO之后,接下来的所有操作都被记录到此VAO当中,直到这个VAO被解除绑定为止。VAO就是画一个图形所需要的所有属性。绑定完这个VAO之后,可以接着绑定其它的VAO。

    glBindBuffer(GL_ARRAY_BUFFER, VBO);//绑定VBO到当前VAO中,注意GL_ARRAY_BUFFER这个类型只能绑定一个VBO
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);//绑定数据到VBO对象当中
    // Position attribute
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)0);//坐标位置在vertices数组中起始点为0,步长为6个FLOAT数据的长度
    glEnableVertexAttribArray(0);//用vertex shader中的Location0来导入数据,Location0就是坐标数据
    // Color attribute
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(GLfloat), (GLvoid*)(3 * sizeof(GLfloat)));//坐标位置在vertices数组中起始点为3,步长为6个FLOAT数据的长度
    glEnableVertexAttribArray(1);//用vertex shader中的Location1来导入数据,Location0就是颜色标数据

    glBindVertexArray(0); // 解除绑定VAO,对这个VAO的所有操作到此为止,之前的操作被全部保存
 // 循环画图
    while (!glfwWindowShouldClose(window))
    {
        // 检测是否有键盘触发事件
        glfwPollEvents();

        // Render
        // Clear the colorbuffer
        glClearColor(0.2f, 0.3f, 0.3f, 1.0f);//设置背景颜色
        glClear(GL_COLOR_BUFFER_BIT);

        // Draw the triangle
        glUseProgram(shaderProgram);//导入一个GLSL主程序
        glBindVertexArray(VAO);//导入其中一个VAO,一个主程序可以链接多个VAO,在画完这个VAO之后,可以接着画另外一个VAO代表的图形。这是OpenGL比较明显的特征
        glDrawArrays(GL_TRIANGLES, 0, 3);//画三角形
        glBindVertexArray(0); //glBindVertexArray()将VAO属性复位,也就是不绑定任意一个VAO

        // Swap the screen buffers
        glfwSwapBuffers(window);
    }
时间: 2024-10-05 10:02:53

OpenGL中的Shader的相关文章

GLSL 在OpenGL中向shader传递信息【转】

http://blog.csdn.net/hgl868/article/details/7872219 引言 一个OpenGL程序可以用多种方式和shader通信.注意这种通信是单向的,因为shader的输出只能是渲染到某些目标,比如颜色和深度缓存. OpenGL的部分状态可以被shader访问,因此程序改变OpenGL某些状态就可以与shader进行通信了.例如一个程序想把光的颜色传给shader,可以直接调用OpenGL接口,就像使用固定功能流水线时做的那样. 不过,使用OpenGL状态并不

OpenGL中使用Shader的基本步骤

在OpenGL中,创建和使用Shader的基本步骤如下: 1.通过glCreateShader创建一个或多个着色器对象: 2.使用glShaderSource加载着色器的源代码,和着色器对象关联: 3.glCompileShader编译每个着色器对象 4.使用glCreateProgram创建程序对象 5.通过glAttachShader将所有着色器对象绑定到程序对象上: 6.glLinkProgram链接程序对象: 7.调用glUseProgram使用着色器程序对象,使得着色器可执行程序成为O

OpenGL中glVertex、显示列表(glCallList)、顶点数组(Vertex array)、VBO及VAO区别

OpenGL中glVertex.显示列表(glCallList).顶点数组(Vertex array).VBO及VAO区别 1.glVertex 最原始的设置顶点方法,在glBegin和glEnd之间使用.OpenGL3.0已经废弃此方法.每个glVertex与GPU进行一次通信,十分低效. glBegin(GL_TRIANGLES); glVertex(0, 0); glVertex(1, 1); glVertex(2, 2); glEnd(); 2.显示列表(glCallList) 每个gl

cocos2dx(3.X)中使用shader

原文链接:http://blog.csdn.net/xufeng0991/article/details/47256583 一 shader的基本概念 1 什么是shader shader即着色器,就是专门用来渲染3D图形的一种技术. 通过shader,可以自己编写显卡渲染画面的算法,使画面更漂亮.更逼真. 2 shader分类 shader又分两种,一种是顶点shader(3D图形是由三角形组成的,顶点shader就是计算顶点位置,并为后期像素渲染做准备的), 另一种是像素shader,就是以

OpenGL中使用着色器

OpenGL中使用GLSL着色器步骤 GLSL既适用于顶点着色器,也适用于片段着色器. 使用着色器对象的步骤: 1.创建着色器对象: GLuint glCreateShader(GLenum type); //创建一个着色器对象,type值必须是GL_VERTEX_SHADER或GL_FRAGMENT_SHADER.error返回0 2.把着色器的源码与着色器对象相关联: glShaderSource(GLuint shader, GLsizei count, const GLChar** st

OpenGL中实现双缓冲技术

在OpenGL中实现双缓冲技术的一种简单方法: 1.在调用glutInitDisplayMode函数时, 开启GLUT_DOUBLE,即glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);.这里将我们惯用的GLUT_SINGLE替换为GLUT_DOUBLE,意为要使用双缓冲而非单缓冲. 2. 调用glutDisplayFunc(display)注册回调函数时, 在回调函数中所有绘制操作完成后调用glutSwapBuffers()交换两个缓冲区指针. 3. 调用

什么是OpenGL中的深度、深度缓存、深度测试?

原文来自http://blog.csdn.net/xiaoquanhuang/article/details/6613705 1)直观理解 深度其实就是该象素点在3d世界中距离摄象机的距离,深度缓存中存储着每个象素点(绘制在屏幕上的)的深度值!深度测试决定了是否绘制较远的象素点(或较近的象素点),通常选用较近的,而较远优先能实现透视的效果!!! 2)Z值(深度值).Z buffer(深度缓存) 下面先讲讲Z坐标.Z坐标和X.Y坐标一样.在变换.裁减和透视除法后,Z的范围为-1.0~1.0.Dep

openGL中的混合

    之前在项目中就使用过混合,但是研究的不深入,近期美术的一个需求让我下决心重新深入的研究了一下混合以及它在cocos2d-x中的使用,在这里分享给大家. 混合(blend,有些翻译书上把它称作混融,以下简称混合),在openGL中,当一个输入的片元通过了所有相关的片元测试,就可以在与颜色缓存中当前的内容通过某种方式进行合并了.最简单的,也是默认的方式,就是直接覆盖已有的值,实际上不能称作是合并.除此之外,我们也可以将帧缓存中已有的颜色与输入的片元颜色进行混合.这是在openGL流程上的定义

OpenGL中的颜色混合功能(一)

我们知道,材料属性和光照参数可以极大地增加图形的逼真度,但除此之外,我们在对现实世界进行建模时,有许多效果是通过混合颜色的方式实现的.透明的物体,像是玻璃水杯,在它后面发射过来的光会与透明物体的颜色混合在一起.这种透明在OpenGL中的实现方式,是通过首先绘制背景物体,然后把前景物体(比如水杯)与颜色缓冲区中已经存在的颜色进行混合而实现的.在这一过程中,颜色的alpha值成分发挥了重要作用. 颜色的混合功能 在一般情况下,OpenGL在渲染时把颜色值存放在颜色缓冲区中,把每个片段(像素)的深度值