大数据方面的核心技术

目前,大数据领域每年都会涌现出大量新的技术,成为大数据获取、存储、处理分析或可视化的有效手段。大数据技术能够将大规模数据中隐藏的信息和知识挖掘出来,为人类社会经济活动提供依据,提高各个领域的运行效率,甚至整个社会经济的集约化程度。那么下面我们就说说大数据方面的核心技术有哪些:

1. 大数据生命周期

· 底层是基础设施,涵盖计算资源、内存与存储和网络互联,具体表现为计算节点、集群、机柜和数据中心。在此之上是数据存储和管理,包括文件系统、数据库和类似YARN的资源管理系统。然后是计算处理层,如hadoop、MapReduce和Spark,以及在此之上的各种不同计算范式,如批处理、流处理和图计算等,包括衍生出编程模型的计算模型,如BSP、GAS 等。

· 数据分析和可视化基于计算处理层。分析包括简单的查询分析、流分析以及更复杂的分析(如机器学习、图计算等)。查询分析多基于表结构和关系函数,流分析基于数据、事件流以及简单的统计分析,而复杂分析则基于更复杂的数据结构与方法,如图、矩阵、迭代计算和线性代数。一般意义的可视化是对分析结果的展示。但是通过交互式可视化,还可以探索性地提问,使分析获得新的线索,形成迭代的分析和可视化。基于大规模数据的实时交互可视化分析以及在这个过程中引入自动化的因素是目前研究的热点。

· 2.大数据技术生态

· 大数据的基本处理流程与传统数据处理流程并无太大差异,主要区别在于:由于大数据要处理大量、非结构化的数据,所以在各处理环节中都可以采用并行处理。目前,Hadoop、MapReduce和Spark等分布式处理方式已经成为大数据处理各环节的通用处理方法。

· 3.大数据采集与预处理

在大数据的生命周期中,数据采集处于第一个环节。根据MapReduce产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。对于不同的数据集,可能存在不同的结构和模式,如文件、XML 树、关系表等,表现为数据的异构性。对多个异构的数据集,需要做进一步集成处理或整合处理,将来自不同数据集的数据收集、整理、清洗、转换后,生成到一个新的数据集,为后续查询和分析处理提供统一的数据视图。针对管理信息系统中异构数据库集成技术、Web 信息系统中的实体识别技术和DeepWeb集成技术、传感器网络数据融合技术已经有很多研究工作,取得了较大的进展,已经推出了多种数据清洗和质量控制工具。

· 4.大数据存储与管理

按数据类型的不同,大数据的存储和管理采用不同的技术路线,大致可以分为3类。第1类主要面对的是大规模的结构化数据。针对这类大数据,通常采用新型数据库集群。它们通过列存储或行列混合存储以及粗粒度索引等技术,结合MPP(Massive Parallel Processing)架构高效的分布式计算模式,实现对PB 量级数据的存储和管理。这类集群具有高性能和高扩展性特点,在企业分析类应用领域已获得广泛应用;第2类主要面对的是半结构化和非结构化数据。应对这类应用场景,基于Hadoop开源体系的系统平台更为擅长。它们通过对Hadoop生态体系的技术扩展和封装,实现对半结构化和非结构化数据的存储和管理;第3类面对的是结构化和非结构化混合的大数据,因此采用MPP 并行数据库集群与Hadoop
集群的混合来实现对百PB 量级、EB量级数据的存储和管理。一方面,用MPP 来管理计算高质量的结构化数据,提供强大的SQL和OLTP型服务;另一方面,用Hadoop实现对半结构化和非结构化数据的处理,以支持诸如内容检索、深度挖掘与综合分析等新型应用。这类混合模式将是大数据存储和管理未来发展的趋势。

· 5.大数据计算模式与系统

· 所谓大数据计算模式,即根据大数据的不同数据特征和计算特征,从多样性的大数据计算问题和需求中提炼并建立的各种高层抽象(abstraction)或模型(model)。例如,MapReduce 是一个并行计算抽象,加州大学伯克利分校著名的Spark系统中的“分布内存抽象RDD”,CMU
著名的图计算系统GraphLab中的“图并行抽象”(Graph Parallel Abstraction)等。传统的并行计算方法,主要从体系结构和编程语言的层面定义了一些较为底层的并行计算抽象和模型,但由于大数据处理问题具有很多高层的数据特征和计算特征,因此大数据处理需要更多地结合这些高层特征考虑更为高层的计算模式。

根据大数据处理多样性的需求和以上不同的特征维度,目前出现了多种典型和重要的大数据计算模式。与这些计算模式相适应,出现了很多对应的大数据计算系统和工具。由于单纯描述计算模式比较抽象和空洞,因此在描述不同计算模式时,将同时给出相应的典型计算系统和工具。

· 6.大数据分析与可视化

大规模数据的可视化主要是基于并行算法设计的技术,合理利用有限的计算资源,高效地处理和分析特定数据集的特性。通常情况下,大规模数据可视化的技术会结合多分辨率表示等方法,以获得足够的互动性能。

在科学大规模数据的并行可视化工作中,主要涉及数据流线化、任务并行化、管道并行化和数据并行化4 种基本技术。微软公司在其云计算平台Azure 上开发了大规模机器学习可视化平台(Azure Machine Learning),将大数据分析任务形式为有向无环图并以数据流图的方式向用户展示,取得了比较好的效果。在国内,阿里巴巴旗下的大数据分析平台御膳房也采用了类似的方式,为业务人员提供的互动式大数据分析平台。

最后要感谢这个优秀的平台,可以让我们相互交流,如果想进一步学习交流,可以加群460570824,希望大家可以一起学习进步!

?

时间: 2024-11-03 13:17:20

大数据方面的核心技术的相关文章

大数据的五大核心技术,给大数据同行入门研究参考的小知识

21世纪,世界已经进入数据大爆炸的时代,大数据时代已经来临.从商业公司内部的各种管理和运营数据,到个人移动终端与消费电子产品的社会化数据,再到互联网产生的海量信息数据等,每天世界上产生的信息量正在飞速增长.2009年数据信息量达到8 000亿GB,而到2011年达到1.8 ZB.图灵奖获得者Jim Gray提出的“新摩尔定律”:“每18个月全球新增信息量是计算机有史以来全部信息量的总和”,已经得到验证. 大数据的“大”不仅仅体现在数据的海量性,还在于其数据类型的复杂性.随着报表.账单.影像.办公

一篇文章告诉你大数据应该怎么学

最近不少网友向我咨询如何学习大数据技术?大数据怎么入门?怎么做大数据分析?数据科学需要学习那些技术?大数据的应用前景等等问题.由于大数据技术涉及内容太庞杂,大数据应用领域广泛,而且各领域和方向采用的关键技术差异性也会较大,难以三言两语说清楚,本文从数据科学和大数据关键技术体系角度,来说说大数据的核心技术什么,到底要怎么学习它,以及怎么避免大数据学习的误区,以供参考. 1.大数据应用的目标是普适智能 要学好大数据,首先要明确大数据应用的目标,我曾经讲过大数据就好比万金油,像百度几年前提的框计算,这

过来人对大数据学习的建议

大数据的学习其实是比较困难的,这是因为大数据的学习中有很多的内容,如果想要学通那基本上是不可能的,但是对于大数据知识的某一个方面还是可以的,那么怎么学习大数据呢?下面看看过来人是怎么谈论大数据学习的. 首先需要重视的是培训和众包,什么是众包呢?众包是一种基于互联网的创新生产组织形式,企业利用网络将工作分配出去,通过让更合适的人群参与其中来发现创意和解决问题.就目前而言,众包和开源的组合极大推动了IT产业的快速发展,当企业和研究者可在众包上发布数据,数据分析人员可在其上进行竞赛以产生最好的模型.这

想要读懂大数据,你得先了解这些技术

说起大数据,很多人都能聊上一会,但要是问大数据核心技术有哪些,估计很多人就说不上一二来了. 从机器学习到数据可视化,大数据发展至今已经拥有了一套相当成熟的技术树,不同的技术层面有着不同的技术架构,而且每年还会涌现出新的技术名词.面对如此庞杂的技术架构,很多第一次接触大数据的小白几乎都是望而生畏的. 其实想要知道大数据有哪些核心技术很简单,无非三个过程:取数据.算数据.用数据.这么说可能还是有人觉得太空泛,简单来说从大数据的生命周期来看,无外乎四个方面:大数据采集.大数据预处理.大数据存储.大数据

大数据独角兽Palantir之核心技术探秘

Palantir源起 B2B大数据 企业级Google ▼ Palantir(中文名帕兰提尔,源于<指环王>中可穿越时空.洞悉世间一切的水晶球Palantír)被誉为硅谷最神秘的大数据独角兽企业,短短几年内跻身百亿俱乐部,成为全球估值排名第四的初创公司.它的主要客户只在美剧和好莱坞里出现,如美国联邦调查局(FBI).美国中央情报局(CIA).美国国家安全局(NSA).美国军队和各级反恐机构,当然还有如JPMorgan这样的华尔街金融大鳄等等.关于Palantir的传奇故事很多,CIA通过他家的

一文读懂大数据两大核心技术

今天小编给大家先分享一下大数据的两大核心技术,知己知彼才能百战不殆,学习大数据技术也是一样的道理,要先有一个清晰的了解,才能确保自己全身心的投入学习. Hadoop是什么? Hadoop在2006年开始成为雅虎项目,随后晋升为顶级Apache开源项目.它是一种通用的分布式系统基础架构,具有多个组件:Hadoop分布式文件系统(HDFS),它将文件以Hadoop本机格式存储并在集群中并行化; YARN,协调应用程序运行时的调度程序; MapReduce,这是实际并行处理数据的算法.Hadoop使用

大数据学习教程:五大核心技术有哪些?

大数据技术的体系庞大且复杂,基础的技术包含数据的采集.数据预处理.分布式存储.NoSQL数据库.数据仓库.机器学习.并行计算.可视化等各种技术范畴和不同的技术层面.首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理.数据存储.数据清洗.数据查询分析和数据可视化. 一.数据采集与预处理 对于各种来源的数据,包括移动互联网数据.社交网络的数据等,这些结构化和非结构化的海量数据是零散的,也就是所谓的数据孤岛,此时的这些数据并没有什么意义,数据采集就是将这些数据写入数据仓库中,把

详解Kafka: 大数据开发最火的核心技术

详解Kafka: 大数据开发最火的核心技术 架构师技术联盟 2019-06-10 09:23:51 本文共3268个字,预计阅读需要9分钟. 广告 大数据时代来临,如果你还不知道Kafka那你就真的out了(快速掌握Kafka请参考文章:如何全方位掌握Kafka核心技术)!据统计,有三分之一的世界财富500强企业正在使用Kafka,包括所有TOP10旅游公司,7家TOP10银行,8家TOP10保险公司,9家TOP10电信公司等等. LinkedIn.Microsoft和Netflix每天都用Ka

大数据方面核心技术有哪些?新人必读

大数据技术的体系庞大且复杂,基础的技术包含数据的采集.数据预处理.分布式存储.NoSQL数据库.数据仓库.机器学习.并行计算.可视化等各种技术范畴和不同的技术层面.首先给出一个通用化的大数据处理框架,主要分为下面几个方面:数据采集与预处理.数据存储.数据清洗.数据查询分析和数据可视化. 在这里还是要推荐下我自己建的大数据学习交流群:529867072,群里都是学大数据开发的,如果你正在学习大数据 ,小编欢迎你加入,大家都是软件开发党,不定期分享干货(只有大数据软件开发相关的),包括我自己整理的一