hdu4944FSF’s game(数论)

题目:hdu4944FSF’s game(数论)

题目大意:给定N,然后会有N * ( N + 1)/2个等级的矩形,(1 * 1, 2 * 1, 2* 2, ...N * 1, N * 2.. N* N).将这些矩阵分成大小相同的K * K 的正方形,能够获得金币A * B / gcd(A

/ K, B/ K);然后给定N,问能够得到的总金币。

解题思路:对于sum(N):N * (N + 1) / 2个等级的矩形的金币总和 = sum(N - 1) + f(N):(N * 1, N * 2,...N * N)这一些矩形的金币之和)。

例如N = 8: 1* 8/ gcd(8/1, 1/1)  2* 8 / gcd(8/1,2/1) 2 * 8/ gcd(8/2,  2/2) ....8 * 8 / gcd(8/1,8/2) 8 * 8/ gcd(8/2.8/2), 8 * 8/ gcd(8/4, 8/4), 8 * 8 / gcd(8/8, 8/8)

1* 8    2* 8/2 @    2*8     3* 8     4 * 8    4 * 8/[email protected]    4 * 8/4     5 * 8    6 * 8    6*8 /2 @   7 * 8    8 * 8   @8 * 8/2   8 *8/4   8*8 /8

可以发现gcd(A /K, B/K)是N的因子。另a = gcd, N = n*a.

对于gcd = a

可获得的金币G(a):                   1*a * N/ a   + 2 * a * N / a + 3 *a * N/a +...+ na * N /a = (1 +2 + 3 + n) * N

那么枚举N的因子n,加起来就是f(N) = sum1..n(G(ai)).

代码:

#include <cstdio>
#include <cstring>

typedef unsigned __int64 ll;

const int maxn = 500005;
const ll M = 1LL<<32;//int1会溢出

ll f1[maxn];
ll f2[maxn];

void init () {

	for (int i = 1; i < maxn; i++) {
		for (int j = 1; j * i < maxn; j++)
			f1[i * j] = (f1[i * j] + (1LL + i) * i / 2) % M;
	}

	f2[1] = 1;
	for (int i = 2; i < maxn; i++)
		f2[i] = (f2[i - 1] + f1[i] * i) % M;
}

int main () {

	int t;
	int n;
	init ();
	scanf ("%d", &t);
	for (int i = 1; i <= t; i++) {

		scanf ("%d", &n);
		printf ("Case #%d: %I64u\n", i, f2[n]);
	}
	return 0;
}

hdu4944FSF’s game(数论)

时间: 2025-01-17 21:16:48

hdu4944FSF’s game(数论)的相关文章

NKOJ1236 a^b (数论定理的应用)

          a^b 对于任意两个正整数a,b(0<=a,b<10000)计算a b各位数字的和的各位数字的和的各位数字的和的各位数字的和. Input 输入有多组数据,每组只有一行,包含两个正整数a,b.最后一组a=0,b=0表示输入结束,不需要处理. Output 对于每组输入数据,输出ab各位数字的和的各位数字的和的各位数字的和的各位数字的和. Sample Input 2 3 5 7 0 0 Sample Output 8 5 思路: 数论定理:任何数除以9的余数等于各位数的和除

CodeForces 396A 数论 组合数学

题目:http://codeforces.com/contest/396/problem/A 好久没做数论的东西了,一个获取素数的预处理跟素因子分解写错了,哭瞎了,呵呵, 首先ai最大值为10^9,n为500,最坏的情况 m最大值为500个10^9相乘,肯定不能获取m了,首选每一个ai肯定是m的一个因子,然后能分解就把ai给分解素因子,这样全部的ai都分解了  就能得到m的 所有素因子 以及 所有素因子的个数,题目求的 是n个因子的 不同序列的个数,所以每次 只能选出n个因子,这n个因子由素因子

HDU 4861 Couple doubi(数论)

HDU 4861 Couple doubi 题目链接 题意:给定k,p,有k个球,每个球的值为1^i+2^i+...+(p-1)^i (mod p) (1 <= i <= k),现在两人轮流取球,最后球的值总和大的人赢,问先手是否能赢 思路:先手不可能输,非赢即平,那么只要考虑每种球的值, 利用费马小定理或欧拉定理,很容易得到该函数的循环节为p - 1, 那么i如果为p - 1的倍数,即为循环节的位置,那么每个值都为1,总和为p - 1 如果i不在循环节的位置,任取一个原根g,根据原根的性质,

UVA 10548 - Find the Right Changes(数论)

UVA 10548 - Find the Right Changes 题目链接 题意:给定a,b,c,表示货物的价值,求由A货物和B货物组成C货物有几种方法,判断有无解和是否有无限多种 思路:扩展欧几里得求通解,去计算上限和下限就能判断 代码: #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; const long l

hdu 4542 数论 + 约数个数相关 腾讯编程马拉松复赛

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4542 小明系列故事--未知剩余系 Time Limit: 500/200 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Total Submission(s): 889    Accepted Submission(s): 207 Problem Description "今有物不知其数,三三数之有二,五五数之有三,七七数之有

[施工中]良心数论.

/* Copyright: xjjppm Author: xjjppm Date: 08-08-17 11:36 Description: Number Theory */ #include <map> #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> inline int input() { char c=getchar();int x=0,a=

信息学中的数论(一)

做oi题目的时候,遇到数论题会令我兴奋不已. 这一篇让我来聊一聊我学过的gcd,lcm,扩展欧几里得算法,逆元,组合数等. 这篇贴的代码都是未经过编译运行的,所以如果有错或有疑问请评论. 恩 那么什么是数论 和数学有关的非几何都是数论? 嘛,我也不知道定义,那么就草率地认为所有和数学有关的非计算几何知识都是数论吧. 我们先来聊一聊gcd. 这个东西,非常的有用. 它的名字叫最大公约数. 正常人都知道,有一个方法叫辗转相除法(证明略): int gcd(int a,int b) { if(!b)r

【数论Day3】进制问题 题解

数论进入第三天,进制问题是常用提醒,是数论的一个重要知识点,常考! 题面:http://www.cnblogs.com/ljc20020730/p/6935255.html 1.K进制数(Kbased.pas/c/cpp) 首先明确数据范围: [数据规模和约定] 对于40%的数据,a的长度不超过5. 对于100%的数据,a的长度不超过100000. 对于40%暴力枚举不多说,上代码: var t,i,k,tt:longint; a:qword; s:string; function pow(x,

Bzoj2219 数论之神

Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 954  Solved: 268 Description 在ACM_DIY群中,有一位叫做“傻崽”的同学由于在数论方面造诣很高,被称为数轮之神!对于任何数论问题,他都能瞬间秒杀!一天他在群里面问了一个神题: 对于给定的3个非负整数 A,B,K 求出满足 (1) X^A = B(mod 2*K + 1) (2) X 在范围[0, 2K] 内的X的个数!自然数论之神是可以瞬间秒杀此题的,那么你呢? Inpu