SparkContext的初始化(叔篇)——TaskScheduler的启动

《深入理解Spark:核心思想与源码分析》一书前言的内容请看链接《深入理解SPARK:核心思想与源码分析》一书正式出版上市

《深入理解Spark:核心思想与源码分析》一书第一章的内容请看链接《第1章 环境准备》

《深入理解Spark:核心思想与源码分析》一书第二章的内容请看链接《第2章 SPARK设计理念与基本架构》

由于本书的第3章内容较多,所以打算分别开辟四篇随笔分别展现。

《深入理解Spark:核心思想与源码分析》一书第三章第一部分的内容请看链接《深入理解Spark:核心思想与源码分析》——SparkContext的初始化(伯篇)》

《深入理解Spark:核心思想与源码分析》一书第三章第二部分的内容请看链接《深入理解Spark:核心思想与源码分析》——SparkContext的初始化(仲篇)》

本文展现第3章第三部分的内容:

3.8 TaskScheduler的启动

  3.7节介绍了任务调度器TaskScheduler的创建,要想TaskScheduler发挥作用,必须要启动它,代码如下。

taskScheduler.start()

TaskScheduler在启动的时候,实际调用了backend的start方法。

  override def start() {

    backend.start()

  }

以LocalBackend为例,启动LocalBackend时向actorSystem注册了LocalActor,见代码清单3-30所示(在《深入理解Spark:核心思想与源码分析》——SparkContext的初始化(中)》一文)。

3.8.1 创建LocalActor

  创建LocalActor的过程主要是构建本地的Executor,见代码清单3-36。

代码清单3-36         LocalActor的实现

private[spark] class LocalActor(scheduler: TaskSchedulerImpl, executorBackend: LocalBackend,

  private val totalCores: Int) extends Actor with ActorLogReceive with Logging {

  import context.dispatcher   // to use Akka‘s scheduler.scheduleOnce()

  private var freeCores = totalCores

  private val localExecutorId = SparkContext.DRIVER_IDENTIFIER

  private val localExecutorHostname = "localhost"

  val executor = new Executor(

    localExecutorId, localExecutorHostname, scheduler.conf.getAll, totalCores, isLocal = true)

  override def receiveWithLogging = {

    case ReviveOffers =>

      reviveOffers()

    case StatusUpdate(taskId, state, serializedData) =>

      scheduler.statusUpdate(taskId, state, serializedData)

      if (TaskState.isFinished(state)) {

        freeCores += scheduler.CPUS_PER_TASK

        reviveOffers()

      }

    case KillTask(taskId, interruptThread) =>

      executor.killTask(taskId, interruptThread)

    case StopExecutor =>

      executor.stop()

  }

}

Executor的构建,见代码清单3-37,主要包括以下步骤:

1) 创建并注册ExecutorSource。ExecutorSource是做什么的呢?笔者将在3.10.2节详细介绍。

2) 获取SparkEnv。如果是非local模式,Worker上的CoarseGrainedExecutorBackend向Driver上的CoarseGrainedExecutorBackend注册Executor时,则需要新建SparkEnv。可以修改属性spark.executor.port(默认为0,表示随机生成)来配置Executor中的ActorSystem的端口号。

3) 创建并注册ExecutorActor。ExecutorActor负责接受发送给Executor的消息。

4) urlClassLoader的创建。为什么需要创建这个ClassLoader?在非local模式中,Driver或者Worker上都会有多个Executor,每个Executor都设置自身的urlClassLoader,用于加载任务上传的jar包中的类,有效对任务的类加载环境进行隔离。

5) 创建Executor执行TaskRunner任务(TaskRunner将在5.5节介绍)的线程池。此线程池是通过调用Utils.newDaemonCachedThreadPool创建的,具体实现请参阅附录A。

6) 启动Executor的心跳线程。此线程用于向Driver发送心跳。

此外,还包括Akka发送消息的帧大小(10485760字节)、结果总大小的字节限制(1073741824字节)、正在运行的task的列表、设置serializer的默认ClassLoader为创建的ClassLoader等。

代码清单3-37         Executor的构建

  val executorSource = new ExecutorSource(this, executorId)

  private val env = {

    if (!isLocal) {

      val port = conf.getInt("spark.executor.port", 0)

      val _env = SparkEnv.createExecutorEnv(

        conf, executorId, executorHostname, port, numCores, isLocal, actorSystem)

      SparkEnv.set(_env)

      _env.metricsSystem.registerSource(executorSource)

      _env.blockManager.initialize(conf.getAppId)

      _env

    } else {

      SparkEnv.get

    }

  }

  private val executorActor = env.actorSystem.actorOf(

    Props(new ExecutorActor(executorId)), "ExecutorActor")

  private val urlClassLoader = createClassLoader()

  private val replClassLoader = addReplClassLoaderIfNeeded(urlClassLoader)

  env.serializer.setDefaultClassLoader(urlClassLoader)

  private val akkaFrameSize = AkkaUtils.maxFrameSizeBytes(conf)

  private val maxResultSize = Utils.getMaxResultSize(conf)

  val threadPool = Utils.newDaemonCachedThreadPool("Executor task launch worker")

  private val runningTasks = new ConcurrentHashMap[Long, TaskRunner]

  startDriverHeartbeater()

3.8.2 ExecutorSource的创建与注册

  ExecutorSource用于测量系统。通过metricRegistry的register方法注册计量,这些计量信息包括threadpool.activeTasks、threadpool.completeTasks、threadpool.currentPool_size、threadpool.maxPool_size、filesystem.hdfs.write_bytes、filesystem.hdfs.read_ops、filesystem.file.write_bytes、filesystem.hdfs.largeRead_ops、filesystem.hdfs.write_ops等,ExecutorSource的实现见代码清单3-38。Metric接口的具体实现,参考附录D。

代码清单3-38         ExecutorSource的实现

private[spark] class ExecutorSource(val executor: Executor, executorId: String) extends Source {

  private def fileStats(scheme: String) : Option[FileSystem.Statistics] =

    FileSystem.getAllStatistics().filter(s => s.getScheme.equals(scheme)).headOption

  private def registerFileSystemStat[T](

        scheme: String, name: String, f: FileSystem.Statistics => T, defaultValue: T) = {

    metricRegistry.register(MetricRegistry.name("filesystem", scheme, name), new Gauge[T] {

      override def getValue: T = fileStats(scheme).map(f).getOrElse(defaultValue)

    })

  }

  override val metricRegistry = new MetricRegistry()

  override val sourceName = "executor"

metricRegistry.register(MetricRegistry.name("threadpool", "activeTasks"), new Gauge[Int] {

    override def getValue: Int = executor.threadPool.getActiveCount()

  })

 metricRegistry.register(MetricRegistry.name("threadpool", "completeTasks"), new Gauge[Long] {

    override def getValue: Long = executor.threadPool.getCompletedTaskCount()

  })

  metricRegistry.register(MetricRegistry.name("threadpool", "currentPool_size"), new Gauge[Int] {

    override def getValue: Int = executor.threadPool.getPoolSize()

  })

  metricRegistry.register(MetricRegistry.name("threadpool", "maxPool_size"), new Gauge[Int] {

    override def getValue: Int = executor.threadPool.getMaximumPoolSize()

  })

  // Gauge for file system stats of this executor

  for (scheme <- Array("hdfs", "file")) {

    registerFileSystemStat(scheme, "read_bytes", _.getBytesRead(), 0L)

    registerFileSystemStat(scheme, "write_bytes", _.getBytesWritten(), 0L)

    registerFileSystemStat(scheme, "read_ops", _.getReadOps(), 0)

    registerFileSystemStat(scheme, "largeRead_ops", _.getLargeReadOps(), 0)

    registerFileSystemStat(scheme, "write_ops", _.getWriteOps(), 0)

  }

} 

创建完ExecutorSource后,调用MetricsSystem的registerSource方法将ExecutorSource注册到MetricsSystem。registerSource方法使用MetricRegistry的register方法,将Source注册到MetricRegistry,见代码清单3-39。关于MetricRegistry,具体参阅附录D。

代码清单3-39         MetricsSystem注册Source的实现

  def registerSource(source: Source) {

    sources += source

    try {

      val regName = buildRegistryName(source)

      registry.register(regName, source.metricRegistry)

    } catch {

      case e: IllegalArgumentException => logInfo("Metrics already registered", e)

    }

  } 

3.8.3 ExecutorActor的构建与注册

  ExecutorActor很简单,当接收到SparkUI发来的消息时,将所有线程的栈信息发送回去,代码实现如下。

  override def receiveWithLogging = {

    case TriggerThreadDump =>

      sender ! Utils.getThreadDump()

  }

3.8.4 Spark自身ClassLoader的创建

  获取要创建的ClassLoader的父加载器currentLoader,然后根据currentJars生成URL数组,spark.files.userClassPathFirst属性指定加载类时是否先从用户的classpath下加载,最后创建ExecutorURLClassLoader或者ChildExecutorURLClassLoader,见代码清单3-40。

代码清单3-40         Spark自身ClassLoader的创建

  private def createClassLoader(): MutableURLClassLoader = {

    val currentLoader = Utils.getContextOrSparkClassLoader

    val urls = currentJars.keySet.map { uri =>

      new File(uri.split("/").last).toURI.toURL

    }.toArray

    val userClassPathFirst = conf.getBoolean("spark.files.userClassPathFirst", false)

    userClassPathFirst match {

      case true => new ChildExecutorURLClassLoader(urls, currentLoader)

      case false => new ExecutorURLClassLoader(urls, currentLoader)

    }

  } 

Utils.getContextOrSparkClassLoader的实现见附录A。ExecutorURLClassLoader或者ChildExecutorURLClassLoader实际上都继承了URLClassLoader,见代码清单3-41。 

代码清单3-41         ChildExecutorURLClassLoader与ExecutorURLClassLoader的实现

private[spark] class ChildExecutorURLClassLoader(urls: Array[URL], parent: ClassLoader)

  extends MutableURLClassLoader {

  private object userClassLoader extends URLClassLoader(urls, null){

    override def addURL(url: URL) {

      super.addURL(url)

    }

    override def findClass(name: String): Class[_] = {

      super.findClass(name)

    }

  }

  private val parentClassLoader = new ParentClassLoader(parent)

  override def findClass(name: String): Class[_] = {

    try {

      userClassLoader.findClass(name)

    } catch {

      case e: ClassNotFoundException => {

        parentClassLoader.loadClass(name)

      }

    }

  }

  def addURL(url: URL) {

    userClassLoader.addURL(url)

  }

  def getURLs() = {

    userClassLoader.getURLs()

  }

}

private[spark] class ExecutorURLClassLoader(urls: Array[URL], parent: ClassLoader)

  extends URLClassLoader(urls, parent) with MutableURLClassLoader {

  override def addURL(url: URL) {

    super.addURL(url)

  }

}

如果需要REPL交互,还会调用addReplClassLoaderIfNeeded创建replClassLoader,见代码清单3-42。

代码清单3-42         addReplClassLoaderIfNeeded的实现

  private def addReplClassLoaderIfNeeded(parent: ClassLoader): ClassLoader = {

    val classUri = conf.get("spark.repl.class.uri", null)

    if (classUri != null) {

      logInfo("Using REPL class URI: " + classUri)

      val userClassPathFirst: java.lang.Boolean =

        conf.getBoolean("spark.files.userClassPathFirst", false)

      try {

        val klass = Class.forName("org.apache.spark.repl.ExecutorClassLoader")

          .asInstanceOf[Class[_ <: ClassLoader]]

        val constructor = klass.getConstructor(classOf[SparkConf], classOf[String],

          classOf[ClassLoader], classOf[Boolean])

        constructor.newInstance(conf, classUri, parent, userClassPathFirst)

      } catch {

        case _: ClassNotFoundException =>

          logError("Could not find org.apache.spark.repl.ExecutorClassLoader on classpath!")

          System.exit(1)

          null

      }

    } else {

      parent

    }

  }

3.8.5 启动Executor的心跳线程

  Executor的心跳由startDriverHeartbeater启动,见代码清单3-43。Executor心跳线程的间隔由属性spark.executor.heartbeatInterval配置,默认是10000毫秒。此外,超时时间是30秒,超时重试次数是3次,重试间隔是3000毫秒,使用actorSystem.actorSelection (url)方法查找到匹配的Actor引用, url是akka.tcp://[email protected] $driverHost:$driverPort/user/HeartbeatReceiver,最终创建一个运行过程中,每次会休眠10000到20000毫秒的线程。此线程从runningTasks获取最新的有关Task的测量信息,将其与executorId、blockManagerId封装为Heartbeat消息,向HeartbeatReceiver发送Heartbeat消息。

代码清单3-43         启动Executor的心跳线程

  def startDriverHeartbeater() {

    val interval = conf.getInt("spark.executor.heartbeatInterval", 10000)

    val timeout = AkkaUtils.lookupTimeout(conf)

    val retryAttempts = AkkaUtils.numRetries(conf)

    val retryIntervalMs = AkkaUtils.retryWaitMs(conf)

    val heartbeatReceiverRef = AkkaUtils.makeDriverRef("HeartbeatReceiver", conf,env.actorSystem)

    val t = new Thread() {

      override def run() {

        // Sleep a random interval so the heartbeats don‘t end up in sync

        Thread.sleep(interval + (math.random * interval).asInstanceOf[Int])

        while (!isStopped) {

          val tasksMetrics = new ArrayBuffer[(Long, TaskMetrics)]()

          val curGCTime = gcTime

          for (taskRunner <- runningTasks.values()) {

            if (!taskRunner.attemptedTask.isEmpty) {

              Option(taskRunner.task).flatMap(_.metrics).foreach { metrics =>

                metrics.updateShuffleReadMetrics

                metrics.jvmGCTime = curGCTime - taskRunner.startGCTime

                if (isLocal) {

                  val copiedMetrics = Utils.deserialize[TaskMetrics](Utils.serialize(metrics))

                  tasksMetrics += ((taskRunner.taskId, copiedMetrics))

                } else {

                  // It will be copied by serialization

                  tasksMetrics += ((taskRunner.taskId, metrics))

                }

              }

            }

          }

          val message = Heartbeat(executorId, tasksMetrics.toArray, env.blockManager.blockManagerId)

          try {

            val response = AkkaUtils.askWithReply[HeartbeatResponse](message, heartbeatReceiverRef,

              retryAttempts, retryIntervalMs, timeout)

            if (response.reregisterBlockManager) {

              logWarning("Told to re-register on heartbeat")

              env.blockManager.reregister()

            }

          } catch {

            case NonFatal(t) => logWarning("Issue communicating with driver in heartbeater", t)

          }

          Thread.sleep(interval)

        }

      }

    }

    t.setDaemon(true)

    t.setName("Driver Heartbeater")

    t.start()

  }

这个心跳线程的作用是什么呢?其作用有两个:

q  更新正在处理的任务的测量信息;

q  通知BlockManagerMaster,此Executor上的BlockManager依然活着。

下面对心跳线程的实现详细分析下,读者可以自行选择是否需要阅读。

  初始化TaskSchedulerImpl后会创建心跳接收器HeartbeatReceiver。HeartbeatReceiver接受所有分配给当前Driver Application的Executor的心跳,并将Task、Task计量信息、心跳等交给TaskSchedulerImpl和DAGScheduler作进一步处理。创建心跳接收器的代码如下。

  private val heartbeatReceiver = env.actorSystem.actorOf(

    Props(new HeartbeatReceiver(taskScheduler)), "HeartbeatReceiver")

HeartbeatReceiver在收到心跳消息后,会调用TaskScheduler的executorHeartbeatReceived方法,代码如下。

  override def receiveWithLogging = {

    case Heartbeat(executorId, taskMetrics, blockManagerId) =>

      val response = HeartbeatResponse(

        !scheduler.executorHeartbeatReceived(executorId, taskMetrics, blockManagerId))

      sender ! response

  }

executorHeartbeatReceived的实现代码如下。

    val metricsWithStageIds: Array[(Long, Int, Int, TaskMetrics)] = synchronized {

      taskMetrics.flatMap { case (id, metrics) =>

        taskIdToTaskSetId.get(id)

          .flatMap(activeTaskSets.get)

          .map(taskSetMgr => (id, taskSetMgr.stageId, taskSetMgr.taskSet.attempt, metrics))

      }

    }

    dagScheduler.executorHeartbeatReceived(execId, metricsWithStageIds, blockManagerId)

这段程序通过遍历taskMetrics,依据taskIdToTaskSetId和activeTaskSets找到TaskSetManager。然后将taskId、TaskSetManager.stageId、TaskSetManager .taskSet.attempt、TaskMetrics封装到Array[(Long, Int, Int, TaskMetrics)]的数组metricsWithStageIds中。最后调用了dagScheduler的executorHeartbeatReceived方法,其实现如下。

    listenerBus.post(SparkListenerExecutorMetricsUpdate(execId, taskMetrics))

    implicit val timeout = Timeout(600 seconds)

    Await.result(

      blockManagerMaster.driverActor ? BlockManagerHeartbeat(blockManagerId),

      timeout.duration).asInstanceOf[Boolean]

dagScheduler将executorId、metricsWithStageIds封装为SparkListenerExecutorMetricsUpdate事件,并post到listenerBus中,此事件用于更新Stage的各种测量数据。最后给BlockManagerMaster持有的BlockManagerMasterActor发送BlockManagerHeartbeat消息。BlockManagerMasterActor在收到消息后会匹配执行heartbeatReceived方法(会在4.3.1节介绍)。heartbeatReceived最终更新BlockManagerMaster对BlockManager最后可见时间(即更新BlockManagerId对应的BlockManagerInfo的_lastSeenMs,见代码清单3-44)。

代码清单3-44         BlockManagerMasterActor的心跳处理

private def heartbeatReceived(blockManagerId: BlockManagerId): Boolean = {

    if (!blockManagerInfo.contains(blockManagerId)) {

      blockManagerId.isDriver && !isLocal

    } else {

      blockManagerInfo(blockManagerId).updateLastSeenMs()

      true

    }

  }

local模式下Executor的心跳通信过程,可以用图3-3来表示。

图3-3       Executor的心跳通信过程

注意:在非local模式中Executor发送心跳的过程是一样的,主要的区别是Executor进程与Driver不在同一个进程,甚至不在同一个节点上。

 

接下来会初始化块管理器BlockManager,代码如下。

env.blockManager.initialize(applicationId)

具体的初始化过程,请参阅第4章。

未完待续。。。

后记:自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的《深入理解Spark:核心思想与源码分析》一书现在已经正式出版上市,目前亚马逊、京东、当当、天猫等网站均有销售,欢迎感兴趣的同学购买。我开始研究源码时的Spark版本是1.2.0,经过7个多月的研究和出版社近4个月的流程,Spark自身的版本迭代也很快,如今最新已经是1.6.0。目前市面上另外2本源码研究的Spark书籍的版本分别是0.9.0版本和1.2.0版本,看来这些书的作者都与我一样,遇到了这种问题。由于研究和出版都需要时间,所以不能及时跟上Spark的脚步,还请大家见谅。但是Spark核心部分的变化相对还是很少的,如果对版本不是过于追求,依然可以选择本书。

京东(现有满100减30活动):http://item.jd.com/11846120.html

当当:http://product.dangdang.com/23838168.html

时间: 2024-10-08 08:15:40

SparkContext的初始化(叔篇)——TaskScheduler的启动的相关文章

Spark源码剖析——SparkContext的初始化(六)_创建和启动DAGScheduler

6.创建和启动DAGScheduler DAGScheduler主要用于在任务正式交给TaskSchedulerImpl提交之前做一些准备工作,包括:创建Job,将DAG中的RDD划分到不同的Stage,提交Stage,等等.创建DAGScheduler的代码如下: DAGScheduler的数据结构主要维护jobId和stageId的关系.Stage.ActiveJob.以及缓存的RDD的partitions的位置信息,见代码: DAGSchedulerEventProcessLoop能处理的

SparkContext的初始化(季篇)——测量系统、ContextCleaner及环境更新

<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析>一书第一章的内容请看链接<第1章 环境准备> <深入理解Spark:核心思想与源码分析>一书第二章的内容请看链接<第2章 SPARK设计理念与基本架构> 由于本书的第3章内容较多,所以打算分别开辟四篇随笔分别展现. <深入理解Spark:核心思想与源码分析>一

Spark源码剖析——SparkContext的初始化(四)_TaskScheduler的启动

7. TaskScheduler的启动 第五节介绍了TaskScheduler的创建,要想TaskScheduler发挥作用,必须要启动它,代码: TaskScheduler在启动的时候,实际调用了backend的start方法,即同时启动了backend.local模式下,这里的backend是localSchedulerBackend.在TaskScheduler初始化时传入localSchedulerBackend.以LocalSchedulerBackend为例,启动LocalSched

TaskScheduler的启动

<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析>一书第一章的内容请看链接<第1章 环境准备> <深入理解Spark:核心思想与源码分析>一书第二章的内容请看链接<第2章 SPARK设计理念与基本架构> 由于本书的第3章内容较多,所以打算分别开辟四篇随笔分别展现. <深入理解Spark:核心思想与源码分析>一

《深入理解SPARK:核心思想与源码分析》——SparkContext的初始化(中)

<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析>一书第一章的内容请看链接<第1章 环境准备> <深入理解Spark:核心思想与源码分析>一书第二章的内容请看链接<第2章 SPARK设计理念与基本架构> 由于本书的第3章内容较多,所以打算分别开辟三篇随笔分别展现. <深入理解Spark:核心思想与源码分析>一

流量管理初始化目录篇(一)

这个项目是我iOS第一个从0开始的一个项目,曾经虽然做过基于cordovar 框架的项目,但是那个项目更多的是js代码来实现,谈不上太多的native代码. 由于自己的喜好和向往,来到了斯凯网络科技,虽然说是上市公司,但是进来之后我才发现负责iOS只有我一个人: 对于工作多年后的我来说,也渐渐明白了,我们都要自己承担起己的责任,依靠别人是给不了我们太多的答案的! 所以此时的我还是比较安静.淡定的---获取自己的能力有了很大的进步的原因.我目前的唯一目标只有一个:我要做一个自己并且大家也喜欢的ap

spark 源码分析之二 -- SparkContext 的初始化过程

创建或使用现有Session 从Spark 2.0 开始,引入了 SparkSession的概念,创建或使用已有的session 代码如下: 1 val spark = SparkSession 2 .builder 3 .appName("SparkTC") 4 .getOrCreate() 首先,使用了 builder 模式来创建或使用已存在的SparkSession,org.apache.spark.sql.SparkSession.Builder#getOrCreate 代码如

SparkContext的初始化过程分析(源码)

 SparkContext的构造函数中,最重要的入参是SparkConf  根据初始化入参生成SparkConf 再根据SparkConf来创建SparkEnv TaskScheduler.start的目的,是启动相应的SchedulerBackend,并启动定时器进行检测.  总结

Spark源码剖析——SparkContext的初始化(四)_Hadoop相关配置及Executor环境变量

4. Hadoop相关配置及Executor环境变量的设置 4.1 Hadoop相关配置信息 默认情况下,Spark使用HDFS作为分布式文件系统,所以需要获取Hadoop相关配置信息的代码如下: 获取的配置信息包括: 将Amazon S3文件系统的AccessKeyId和SecretAccessKey加载到Hadoop的Configuration: 将SparkConf中所有以spark.hadoop. 开头的属性都复制到Hadoop的Configuration: 将SparkConf的属性s