用户行为日志概述
用户行为日志:
- 用户每次访问网站时所有的行为数据
- 访问、浏览、搜索、点击...
- 用户行为轨迹、流量日志(用户行为日志的其他名称)
为什么要记录用户访问行为日志:
- 进行网站页面的访问量的统计
- 分析网站的黏性
- 训练推荐系统
用户行为日志生成渠道:
- web服务器记录的web访问日志
- ajax记录的访问日志以及其他相关的日志
用户行为日志大致内容:
- 访问时间
- 访问者所使用的客户端(UserAgent)
- 访问者的IP地址
- 访问者账号
- 某个页面的停留时间
- 访问的时间与地点
- 跳转的链接地址(referer)
- 访问信息,例如:session_id
- 模块AppID
用户行为日志分析的意义:
- 网站的眼睛,能够看到用户的主要来源、喜好网站上的哪些内容,以及用户的忠诚度等
- 网站的神经,通过分析用户行为日志,我们能对网站的布局、功能进一步的优化,以提高用户的体验等
- 网站的大脑,通过分析结果,进行推广预算的划分,以及重点优化用户群体的倾向点等
离线数据处理架构
离线数据处理流程:
- 数据采集
- 例如可以使用Flume进行数据的采集:将web日志写入到HDFS
- 数据清洗
- 可以使用Spark、Hive、MapReduce等框架进行数据的清洗,清洗完之后的数据可以存放在HDFS或者Hive、Spark SQL里
- 数据处理
- 按照我们的需求进行相应业务的统计和分析
- 数据处理结果入库
- 结果可以存放到RDBMS、NoSQL数据库
- 数据的可视化展示
- 通过图形化展示的方式展现出来:饼图、柱状图、地图、折线图等等
- 工具:ECharts、HUE、Zeppelin
流程示意图:
项目需求
需求:
- 统计网站访问日志中每个浏览器的访问次数
日志片段如下:
183.162.52.7 - - [10/Nov/2016:00:01:02 +0800] "POST /api3/getadv HTTP/1.1" 200 813 "www.xxx.com" "-" cid=0×tamp=1478707261865&uid=2871142&marking=androidbanner&secrect=a6e8e14701ffe9f6063934780d9e2e6d&token=f51e97d1cb1a9caac669ea8acc162b96 "mukewang/5.0.0 (Android 5.1.1; Xiaomi Redmi 3 Build/LMY47V),Network 2G/3G" "-" 10.100.134.244:80 200 0.027 0.027
10.100.0.1 - - [10/Nov/2016:00:01:02 +0800] "HEAD / HTTP/1.1" 301 0 "117.121.101.40" "-" - "curl/7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.16.2.3 Basic ECC zlib/1.2.3 libidn/1.18 libssh2/1.4.2" "-" - - - 0.000
功能实现之UserAgent解析类测试
首先我们需要根据日志信息抽取出浏览器信息,针对不同的浏览器进行统计操作。虽然可以自己实现这个功能,但是懒得再造轮子了,所以我在GitHub找到了一个小工具可以完成这个功能,GitHub地址如下:
通过git clone或者浏览器下载到本地后,使用命令行进入到其主目录下,然后通过maven命令对其进行打包并安装到本地仓库里:
$ mvn clean package -DskipTest
$ mvn clean install -DskipTest
安装完成后,在工程中添加依赖以及插件:
<!-- 添加UserAgent解析的依赖 -->
<dependency>
<groupId>com.kumkee</groupId>
<artifactId>UserAgentParser</artifactId>
<version>0.0.1</version>
</dependency>
<!-- mvn assembly:assembly -->
<build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<archive>
<manifest>
<mainClass></mainClass>
</manifest>
</archive>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
</plugin>
</plugins>
</build>
然后我们编写一个测试用例来测试一下这个解析类,因为之前并没有使用过这个工具,所以对于一个未使用过的工具,要养成在工程中使用之前对其进行测试的好习惯:
package org.zero01.project;
import com.kumkee.userAgent.UserAgent;
import com.kumkee.userAgent.UserAgentParser;
/**
* @program: hadoop-train
* @description: UserAgent解析测试类
* @author: 01
* @create: 2018-04-01 22:43
**/
public class UserAgentTest {
public static void main(String[] args) {
String source = "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/54.0.2840.71 Safari/537.36";
UserAgentParser userAgentParser = new UserAgentParser();
UserAgent agent = userAgentParser.parse(source);
String browser = agent.getBrowser();
String engine = agent.getEngine();
String engineVersion = agent.getEngineVersion();
String os = agent.getOs();
String platform = agent.getPlatform();
boolean isMobile = agent.isMobile();
System.out.println("浏览器:" + browser);
System.out.println("引擎:" + engine);
System.out.println("引擎版本:" + engineVersion);
System.out.println("操作系统:" + os);
System.out.println("平台:" + platform);
System.out.println("是否是移动设备:" + isMobile);
}
}
控制台输出结果如下:
浏览器:Chrome
引擎:Webkit
引擎版本:537.36
操作系统:Windows 7
平台:Windows
是否是移动设备:false
从打印结果可以看到,UserAgent的相关信息都正常获取到了,我们就可以在工程中进行使用这个工具了。
使用MapReduce完成需求统计
创建一个类,编写代码如下:
package org.zero01.hadoop.project;
import com.kumkee.userAgent.UserAgent;
import com.kumkee.userAgent.UserAgentParser;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
/**
* @program: hadoop-train
* @description: 使用MapReduce来完成统计浏览器的访问次数
* @author: 01
* @create: 2018-04-02 14:20
**/
public class LogApp {
/**
* Map: 读取输入的文件内容
*/
public static class MyMapper extends Mapper<LongWritable, Text, Text, LongWritable> {
LongWritable one = new LongWritable(1);
private UserAgentParser userAgentParser;
protected void setup(Context context) throws IOException, InterruptedException {
userAgentParser = new UserAgentParser();
}
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 接收到的每一行日志信息
String line = value.toString();
String source = line.substring(getCharacterPosition(line, "\"", 7) + 1);
UserAgent agent = userAgentParser.parse(source);
String browser = agent.getBrowser();
// 通过上下文把map的处理结果输出
context.write(new Text(browser), one);
}
protected void cleanup(Context context) throws IOException, InterruptedException {
userAgentParser = null;
}
}
/**
* Reduce: 归并操作
*/
public static class MyReducer extends Reducer<Text, LongWritable, Text, LongWritable> {
protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
long sum = 0;
for (LongWritable value : values) {
// 求key出现的次数总和
sum += value.get();
}
// 将最终的统计结果输出
context.write(key, new LongWritable(sum));
}
}
/**
* 获取指定字符串中指定标识的字符串出现的索引位置
*
* @param value
* @param operator
* @param index
* @return
*/
private static int getCharacterPosition(String value, String operator, int index) {
Matcher slashMatcher = Pattern.compile(operator).matcher(value);
int mIdex = 0;
while (slashMatcher.find()) {
mIdex++;
if (mIdex == index) {
break;
}
}
return slashMatcher.start();
}
/**
* 定义Driver:封装了MapReduce作业的所有信息
*/
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration configuration = new Configuration();
// 准备清理已存在的输出目录
Path outputPath = new Path(args[1]);
FileSystem fileSystem = FileSystem.get(configuration);
if (fileSystem.exists(outputPath)) {
fileSystem.delete(outputPath, true);
System.out.println("output file exists, but is has deleted");
}
// 创建Job,通过参数设置Job的名称
Job job = Job.getInstance(configuration, "LogApp");
// 设置Job的处理类
job.setJarByClass(LogApp.class);
// 设置作业处理的输入路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
// 设置map相关参数
job.setMapperClass(LogApp.MyMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(LongWritable.class);
// 设置reduce相关参数
job.setReducerClass(LogApp.MyReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
// 设置作业处理完成后的输出路径
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
在工程目录下打开控制台,输入如下命令进行打包:
mvn assembly:assembly
打包成功:
将这个jar包上传到服务器上:
[[email protected] ~]# rz
[[email protected] ~]# ls |grep hadoop-train-1.0-jar-with-dependencies.jar
hadoop-train-1.0-jar-with-dependencies.jar
[[email protected] ~]#
把事先准备好的日志文件上传到HDFS文件系统中:
[[email protected] ~]# hdfs dfs -put ./10000_access.log /
[[email protected] ~]# hdfs dfs -ls /10000_access.log
-rw-r--r-- 1 root supergroup 2769741 2018-04-02 22:33 /10000_access.log
[[email protected] ~]#
执行如下命令
[[email protected] ~]# hadoop jar ./hadoop-train-1.0-jar-with-dependencies.jar org.zero01.hadoop.project.LogApp /10000_access.log /browserout
执行成功:
查看处理结果:
[[email protected] ~]# hdfs dfs -ls /browserout
Found 2 items
-rw-r--r-- 1 root supergroup 0 2018-04-02 22:42 /browserout/_SUCCESS
-rw-r--r-- 1 root supergroup 56 2018-04-02 22:42 /browserout/part-r-00000
[[email protected] ~]# hdfs dfs -text /browserout/part-r-00000
Chrome 2775
Firefox 327
MSIE 78
Safari 115
Unknown 6705
[[email protected] ~]#
原文地址:http://blog.51cto.com/zero01/2093820
时间: 2024-10-08 09:46:45