【转】JAVA程序中Float和Double精度丢失问题

原文网址:http://blog.sina.com.cn/s/blog_827d041701017ctm.html

问题提出:12.0f-11.9f=0.10000038,"减不尽"为什么?

来自MSDN的解释:

http://msdn.microsoft.com/zh-cn/c151dt3s.aspx

为何浮点数可能丢失精度浮点十进制值通常没有完全相同的二进制表示形式。 这是 CPU 所采用的浮点数据表示形式的副作用。为此,可能会经历一些精度丢失,并且一些浮点运算可能会产生意外的结果。

导致此行为的原因是下面之一:

十进制数的二进制表示形式可能不精确。

使用的数字之间类型不匹配(例如,混合使用浮点型和双精度型)。

为解决此行为,大多数程序员或是确保值比需要的大或者小,或是获取并使用可以维护精度的二进制编码的十进制 (BCD) 库。

现在我们就详细剖析一下浮点型运算为什么会造成精度丢失?

1、小数的二进制表示问题

首先我们要搞清楚下面两个问题:

(1) 十进制整数如何转化为二进制数

算法很简单。举个例子,11表示成二进制数:

11/2=5 余   1

5/2=2   余   1

2/2=1   余   0

1/2=0   余   1

0结束         11二进制表示为(从下往上):1011

这里提一点:只要遇到除以后的结果为0了就结束了,大家想一想,所有的整数除以2是不是一定能够最终得到0。换句话说,所有的整数转变为二进制数的算法会不会无限循环下去呢?绝对不会,整数永远可以用二进制精确表示 ,但小数就不一定了。

(2) 十进制小数如何转化为二进制数

算法是乘以2直到没有了小数为止。举个例子,0.9表示成二进制数

0.9*2=1.8   取整数部分 1

0.8(1.8的小数部分)*2=1.6    取整数部分 1

0.6*2=1.2   取整数部分 1

0.2*2=0.4   取整数部分 0

0.4*2=0.8   取整数部分 0

0.8*2=1.6 取整数部分 1

0.6*2=1.2   取整数部分 0

.........      0.9二进制表示为(从上往下): 1100100100100......

注意:上面的计算过程循环了,也就是说*2永远不可能消灭小数部分,这样算法将无限下去。很显然,小数的二进制表示有时是不可能精确的 。其实道理很简单,十进制系统中能不能准确表示出1/3呢?同样二进制系统也无法准确表示1/10。这也就解释了为什么浮点型减法出现了"减不尽"的精度丢失问题。

2、 float型在内存中的存储

众所周知、 Java 的float型在内存中占4个字节。float的32个二进制位结构如下

float内存存储结构 

             4bytes      31    30    29----23    22----0         

            表示       实数符号位    指数符号位        指数位          有效数位

        其中符号位1表示正,0表示负。有效位数位24位,其中一位是实数符号位。

将一个float型转化为内存存储格式的步骤为:

(1)先将这个实数的绝对值化为二进制格式,注意实数的整数部分和小数部分的二进制方法在上面已经探讨过了。
     (2)将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边。
     (3)从小数点右边第一位开始数出二十三位数字放入第22到第0位。
     (4)如果实数是正的,则在第31位放入“0”,否则放入“1”。
     (5)如果n 是左移得到的,说明指数是正的,第30位放入“1”。如果n是右移得到的或n=0,则第30位放入“0”。
     (6)如果n是左移得到的,则将n减去1后化为二进制,并在左边加“0”补足七位,放入第29到第23位。如果n是右移得到的或n=0,则将n化为二进制后在左边加“0”补足七位,再各位求反,再放入第29到第23位。

举例说明: 11.9的内存存储格式

(1) 将11.9化为二进制后大约是" 1011. 1110011001100110011001100..."。

(2) 将小数点左移三位到第一个有效位右侧: "1. 011 11100110011001100110"。 保证有效位数24位,右侧多余的截取(误差在这里产生了 )。

(3) 这已经有了二十四位有效数字,将最左边一位“1”去掉,得到“ 01111100110011001100110 ”共23bit。将它放入float存储结构的第22到第0位。

(4) 因为11.9是正数,因此在第31位实数符号位放入“0”。

(5) 由于我们把小数点左移,因此在第30位指数符号位放入“1”。

(6) 因为我们是把小数点左移3位,因此将3减去1得2,化为二进制,并补足7位得到0000010,放入第29到第23位。

最后表示11.9为: 0 1 0000010 011 11100110011001100110

再举一个例子:0.2356的内存存储格式
      (1)将0.2356化为二进制后大约是0.00111100010100000100100000。
      (2)将小数点右移三位得到1.11100010100000100100000。
      (3)从小数点右边数出二十三位有效数字,即11100010100000100100000放
入第22到第0位。
      (4)由于0.2356是正的,所以在第31位放入“0”。
      (5)由于我们把小数点右移了,所以在第30位放入“0”。
      (6)因为小数点被右移了3位,所以将3化为二进制,在左边补“0”补足七
位,得到0000011,各位取反,得到1111100,放入第29到第23位。

最后表示0.2356为:0 0 1111100 11100010100000100100000

将一个内存存储的float二进制格式转化为十进制的步骤:
     (1)将第22位到第0位的二进制数写出来,在最左边补一位“1”,得到二十四位有效数字。将小数点点在最左边那个“1”的右边。
     (2)取出第29到第23位所表示的值n。当30位是“0”时将n各位求反。当30位是“1”时将n增1。
     (3)将小数点左移n位(当30位是“0”时)或右移n位(当30位是“1”时),得到一个二进制表示的实数。
     (4)将这个二进制实数化为十进制,并根据第31位是“0”还是“1”加上正号或负号即可。

3、浮点型的减法运算

浮点加减运算过程比定点运算过程复杂。完成浮点加减运算的操作过程大体分为四步:
  (1) 0操作数的检查;

如果判断两个需要加减的浮点数有一个为0,即可得知运算结果而没有必要再进行有序的一些列操作。

   (2) 比较阶码(指数位)大小并完成对阶;

两浮点数进行加减,首先要看两数的 指数位 是否相同,即小数点位置是否对齐。若两数 指数位 相同,表示小数点是对齐的,就可以进行尾数的加减运算。反之,若两数阶码不同,表示小数点位置没有对齐,此时必须使两数的阶码相同,这个过程叫做对阶 。

如何对 阶(假设两浮点数的指数位为 Ex 和 Ey ):

通过尾数的移位以改变 Ex 或 Ey ,使之相等。由于浮点表示的数多是规格化的,尾数左移会引起最高有位的丢失,造成很大误差;而尾数右移虽引起最低有效位的丢失,但造成的误差较小,因此,对阶操作规定使尾数右移,尾数右移后使阶码作相应增加,其数值保持不变。很显然,一个增加后的阶码与另一个相等,所增加的阶码一定是小阶。因此在对阶时,总是使小阶向大阶看齐 ,即小阶的尾数向右移位 ( 相当于小数点左移 ) ,每右移一位,其阶码加 1 ,直到两数的阶码相等为止,右移的位数等于阶差 △ E 。
   (3) 尾数(有效数位)进行加或减运算;

对阶完毕后就可 有效数位 求和。不论是加法运算还是减法运算,都按加法进行操作,其方法与定点加减运算完全一样。 
   (4) 结果规格化并进行舍入处理。

4、计算12.0f-11.9f

12.0f 的内存存储格式为: 0 1 0000010 10000000000000000000000

11.9f 的内存存储格式为:   0 1 0000010 011 11100110011001100110

可见两数的指数位完全相同,只要对有效数位进行减法即可。

12.0f-11.9f   结果:         0 1 0000010 00000011001100110011010

将结果还原为十进制为: 0.000 11001100110011010= 0.10000038

详细的分析

由于对float或double 的使用不当,可能会出现精度丢失的问题。问题大概情况可以通过如下代码理解:

view plaincopy to clipboardprint?
public class FloatDoubleTest {  
public static void main(String[] args) {  
float f = 20014999;  
double d = f;  
double d2 = 20014999;  
System.out.println("f=" + f);  
System.out.println("d=" + d);  
System.out.println("d2=" + d2);  
}  
}
public class FloatDoubleTest {
public static void main(String[] args) {
float f = 20014999;
double d = f;
double d2 = 20014999;
System.out.println("f=" + f);
System.out.println("d=" + d);
System.out.println("d2=" + d2);
}
}

得到的结果如下:

f=2.0015E7

d=2.0015E7

d2=2.0014999E7

从输出结果可以看出double 可以正确的表示20014999 ,而float 没有办法表示20014999 ,得到的只是一个近似值。这样的结果很让人讶异。20014999 这么小的数字在float下没办法表示。于是带着这个问题,做了一次关于float和double学习,做个简单分享,希望有助于大家对java 浮点数的理解。

关于 java 的 float 和 double

Java 语言支持两种基本的浮点类型: float 和 double 。java 的浮点类型都依据 IEEE 754 标准。IEEE 754 定义了32 位和 64 位双精度两种浮点二进制小数标准。

IEEE 754 用科学记数法以底数为 2 的小数来表示浮点数。32 位浮点数用 1 位表示数字的符号,用 8 位来表示指数,用 23 位来表示尾数,即小数部分。作为有符号整数的指数可以有正负之分。小数部分用二进制(底数 2 )小数来表示。对于64 位双精度浮点数,用 1 位表示数字的符号,用 11 位表示指数,52 位表示尾数。如下两个图来表示:

float(32位):

double(64位): 

都是分为三个部分:

(1) 一个单独的符号位s 直接编码符号s 。

(2)k 位的幂指数E ,移码表示。

(3)n 位的小数,原码表示。

那么 20014999 为什么用 float 没有办法正确表示?

结合float和double的表示方法,通过分析 20014999 的二进制表示就可以知道答案了。

以下程序可以得出 20014999 在 double 和 float 下的二进制表示方式。

view plaincopy to clipboardprint?
public class FloatDoubleTest3 {  
public static void main(String[] args) {  
double d = 8;  
long l = Double.doubleToLongBits(d);  
System.out.println(Long.toBinaryString(l));  
float f = 8;  
int i = Float.floatToIntBits(f);  
System.out.println(Integer.toBinaryString(i));  
}  
}
public class FloatDoubleTest3 {
public static void main(String[] args) {
double d = 8;
long l = Double.doubleToLongBits(d);
System.out.println(Long.toBinaryString(l));
float f = 8;
int i = Float.floatToIntBits(f);
System.out.println(Integer.toBinaryString(i));
}
}

输出结果如下:

Double:100000101110011000101100111100101110000000000000000000000000000

Float:1001011100110001011001111001100

对于输出结果分析如下。对于都不 double 的二进制左边补上符号位 0 刚好可以得到 64 位的二进制数。根据double的表示法,分为符号数、幂指数和尾数三个部分如下:

0 10000010111 0011000101100111100101110000000000000000000000000000

对于 float 左边补上符号位 0 刚好可以得到 32 位的二进制数。 根据float的表示法, 也分为 符号数、幂指数和尾数三个部分如下:

0 10010111 00110001011001111001100

绿色部分是符号位,红色部分是幂指数,蓝色部分是尾数。

对比可以得出:符号位都是 0 ,幂指数为移码表示,两者刚好也相等。唯一不同的是尾数。

在 double 的尾数为: 001100010110011110010111 0000000000000000000000000000 ,省略后面的零,至少需要24位才能正确表示 。

而在 float 下面尾数为: 00110001011001111001100 ,共 23 位。

为什么会这样?原因很明显,因为 float尾数 最多只能表示 23 位,所以 24 位的 001100010110011110010111 在 float 下面经过四舍五入变成了 23 位的 00110001011001111001100 。所以 20014999 在 float 下面变成了 20015000 。
也就是说 20014999 虽然是在float的表示范围之内,但 在 IEEE 754 的 float 表示法精度长度没有办法表示出 20014999 ,而只能通过四舍五入得到一个近似值。

时间: 2024-10-05 03:59:22

【转】JAVA程序中Float和Double精度丢失问题的相关文章

springmvc中@PathVariable传Double精度丢失

页面请求 http://localhost:8080/test/3.201 后端接受数据 /** * 测试 * * @param number */ @RequestMapping(value = "/test/{number}", method = RequestMethod.GET) public void test(@PathVariable Double number) { System.out.println("数字:" + number); } 结果 数

精确计算java中float和double的精度

[本文相关的代码放在github上,地址为:https://github.com/VigourJiang/StructuredFloat] Java中double类型的格式是遵循IEEE 754标准的.尽管数学意义上的小数是连续的,但double仅仅能表示其中的一些离散点,把这些离散点组成的集合记为S,S的大小还是有限的.如果要保存的小数P刚好在集合S内,那么double类型就能精确的表示P:否则double类型只能从集合S中找一个与P最近的离散点P'代替P. 以上表述对于float也成立.IE

java基础之float、double底层运算

目前java遵照IEEE制定的浮点数表示法来进行float,double运算.这种结构是一种科学计数法,用符号.指数和尾数来表示,底数定为2--即把一个浮点数表示为尾数乘以2的指数次方再添上符号. 我们来看一段java代码: public class FloatToBinary { public static void main(String[] args) { float f1=8.5f; System.out.println("f1底层数据(十进制):"+Float.floatTo

真正的Derby新手教程,Derby安装,创建数据库,在Java程序中使用Derby

1,下载并安装Derby: 下载地址:http://db.apache.org/derby /derby_downloads.html,下载最新版本. 我用的是10.5.3.0. 解压缩到任意文件夹,我的是:E:\Java\Joy\derby 2,配置环境变量: 建立DERBY_HOME,值:E:\Java\Joy\derby\db- derby-10.5.3.0-bin\db-derby-10.5.3.0-bin 在Path加入:%DERBY_HOME%\bin 在CLASSPATH加入:%D

Linux上从Java程序中调用C函数

原则上来说,"100%纯Java"的解决方法是最好的,但有些情况下必须使用本地方法.特别是在以下三种情况: 需要访问Java平台无法访问的系统特性和设备: 通过基准测试,发现Java代码比其他语言编写的等价代码慢得多: 其他语言编写的代码已经经过大量测试和调试,并且知道如何将其导出到所有的目标平台上. Java平台有一个用于和本地C.C++代码进行互操作的API,称为Java本地接口(JNI).下面将举例讨论Linux平台下的JNI编程. 1. 创建java类文件 创建一个native

java程序中sql注入分析及优化方案

先来看看百度百科的解释: 所谓SQL注入,就是通过把SQL命令插入到Web表单提交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令.具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句.比如先前的很多影视网站泄露VIP会员密码大多就是通过WEB表单递交查询字符暴出的,这类表单特别容易受到sql注入攻击. 1.java程序

在java程序中访问windows有用户名和密码保护的共享目录

在java程序中访问windows有用户名和密码保护的共享目录 Posted on 2015-11-20 14:03 云自无心水自闲 阅读(3744) 评论(0)  编辑  收藏 --> Java程序中访问拥有全部读写权限的目录相对比较简单,和普通的目录没有什么差别.但是要访问一个需要用户和密码验证的目录就需要一点点小技巧了.这里介绍一个开源的库能够比较容易的实现这一需求.1. 下载库文件: https://jcifs.samba.org/ 下载的zip文件中, 不仅包含了jar文件,还有文档和

Java程序中解决数据库超时与死锁

Java程序中解决数据库超时与死锁 2011-06-07 11:09 佚名 帮考网 字号:T | T Java程序中解决数据库超时与死锁,每个使用关系型数据库的程序都可能遇到数据死锁或不可用的情况,而这些情况需要在代码中编程来解决.本文主要介绍与数据库事务死锁等情况相关的重试逻辑概念. AD: Java程序中解决数据库超时与死锁,每个使用关系型数据库的程序都可能遇到数据死锁或不可用的情况,而这些情况需要在代码中编程来解决;本文主要介绍与数据库事务死锁等情况相关的重试逻辑概念,此外,还会探讨如何避

浅谈多线程在java程序中的应用

在一个高并发的网站中,多线程是必不可少的.下面先说一下多线程在程序中的作用.1.提高前端请求的响应速度.当我们执行一个比较耗时的方法时,http请求得不到响应甚至会超时,这时如果业务上允许数据的延迟,我们可以使用多线程来进行处理比较耗时的方法.这样前端发送了请求,后端令开启了一个线程去处理任务,就不会阻塞主线程了.2.减清服务器的压力.包括我们的web容器,如tomcat.jetty等,还有数据库服务器等.因为我们使用了多线程,并且线程池大小有限制,如30,那么同时请求数据库的链接就限制为30了