聚类是将相似对象归到同一个簇中的方法,这有点像全自动分类。簇内的对象越相似,聚类的效果越好。支持向量机、神经网络所讨论的分类问题都是有监督的学习方式,现在我们所介绍的聚类则是无监督的。其中,K均值(K-means)是最基本、最简单的聚类算法。
在K均值算法中,质心是定义聚类原型(也就是机器学习获得的结果)的核心。在介绍算法实施的具体过程中,我们将演示质心的计算方法。而且你将看到除了第一次的质心是被指定的以外,此后的质心都是经由计算均值而获得的。
首先,选择K个初始质心(这K个质心并不要求来自于样本数据集),其中K是用户指定的参数,也就是所期望的簇的个数。每个数据点都被收归到距其最近之质心的分类中,而同一个质心所收归的点集为一个簇。然后,根据本次分类的结果,更新每个簇的质心。重复上述数据点分类与质心变更步骤,直到簇内数据点不再改变,或者等价地说,直到质心不再改变。
基本的K均值算法描述如下:
根据数据点到新质心的距离,再次对数据集中的数据进行分类,如图13-2(c)所示。然后,算法根据新的分类来计算新的质心,并再次根据数据点到新质心的距离,对数据集中的数据进行分类。结果发现簇内数据点不再改变,所以算法执行结束,最终的聚类结果如图13-2(d)所示。
对于距离函数和质心类型的某些组合,算法总是收敛到一个解,即K均值到达一种状态,聚类结果和质心都不再改变。但为了避免过度迭代所导致的时间消耗,实践中,也常用一个较弱的条件替换掉“质心不再发生变化”这个条件。例如,使用“直到仅有1%的点改变簇”。
尽管K均值聚类比较简单,但它也的确相当有效。它的某些变种甚至更有效, 并且不太受初始化问题的影响。但K均值并不适合所有的数据类型。它不能处理非球形簇、不同尺寸和不同密度的簇,尽管指定足够大的簇个数时它通常可以发现纯子簇。对包含离群点的数据进行聚类时,K均值也有问题。在这种情况下,离群点检测和删除大有帮助。K均值的另一个问题是,它对初值的选择是敏感的,这说明不同初值的选择所导致的迭代次数可能相差很大。此外,K值的选择也是一个问题。显然,算法本身并不能自适应地判定数据集应该被划分成几个簇。最后,K均值仅限于具有质心(均值)概念的数据。一种相关的K中心点聚类技术没有这种限制。在K中心点聚类中,我们每次选择的不再是均值,而是中位数。这种算法实现的其他细节与K均值相差不大,我们不再赘述。
最后我们给出一个实际应用的例子。(代码采用我最喜欢用做数据挖掘的R语言来实现)
一组来自世界银行的数据统计了30个国家的两项指标,我们用如下代码读入文件并显示其中最开始的几行数据。可见,数据共分散列,其中第一列是国家的名字,该项与后面的聚类分析无关,我们更关心后面两列信息。第二列给出的该国第三产业增加值占GDP的比重,最后一列给出的是人口结构中年龄大于等于65岁的人口(也就是老龄人口)占总人口的比重。
为了方便后续处理,下面对读入的数据库进行一些必要的预处理,主要是调整列标签,以及用国名替换掉行标签(同时删除包含国名的列)。
如果你绘制这些数据的散点图,不难发现这些数据大致可以分为两组。事实上,数据中有一半的国家是OECD成员国,而另外一半则属于发展中国家(包括一些东盟国家、南亚国家和拉美国家)。所以我们可以采用下面的代码来进行K均值聚类分析。
对于聚类结果,限于篇幅我们仍然只列出了最开始的几条。但是如果用图形来显示的话,可能更易于接受。下面是示例代码。
上述代码的执行结果如图13-3所示。
为了方便后续处理,下面对读入的数据库进行一些必要的预处理,主要是调整列标签,以及用国名替换掉行标签(同时删除包含国名的列)。
如果你绘制这些数据的散点图,不难发现这些数据大致可以分为两组。事实上,数据中有一半的国家是OECD成员国,而另外一半则属于发展中国家(包括一些东盟国家、南亚国家和拉美国家)。所以我们可以采用下面的代码来进行K均值聚类分析。
对于聚类结果,限于篇幅我们仍然只列出了最开始的几条。但是如果用图形来显示的话,可能更易于接受。下面是示例代码。
上述代码的执行结果如图13-3所示。
另外一种与k-means非常类似的算法是k-median算法。此处已经无需再详细介绍k-中值算法的细节了,基本上和k-means一样,只是把所有均值出现的地方换成中值而已。这个思想看起好像很不起眼,但是你还别说,k-median算法还真的存在,而且是k-means算法的一个重要补充和改进。