内容概要
- 怎样使用pandas读入数据
- 怎样使用seaborn进行数据的可视化
- scikit-learn的线性回归模型和用法
- 线性回归模型的评估測度
- 特征选择的方法
作为有监督学习,分类问题是预測类别结果,而回归问题是预測一个连续的结果。
1. 使用pandas来读取数据
Pandas是一个用于数据探索、数据处理、数据分析的Python库
In [1]:
import pandas as pd
In [2]:
# read csv file directly from a URL and save the results data = pd.read_csv(‘http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv‘, index_col=0) # display the first 5 rows data.head()
Out[2]:
TV | Radio | Newspaper | Sales | |
---|---|---|---|---|
1 | 230.1 | 37.8 | 69.2 | 22.1 |
2 | 44.5 | 39.3 | 45.1 | 10.4 |
3 | 17.2 | 45.9 | 69.3 | 9.3 |
4 | 151.5 | 41.3 | 58.5 | 18.5 |
5 | 180.8 | 10.8 | 58.4 | 12.9 |
上面显示的结果类似一个电子表格,这个结构称为Pandas的数据帧(data frame)。
pandas的两个主要数据结构:Series和DataFrame:
- Series类似于一维数组,它有一组数据以及一组与之相关的数据标签(即索引)组成。
- DataFrame是一个表格型的数据结构,它含有一组有序的列,每列能够是不同的值类型。DataFrame既有行索引也有列索引,它能够被看做由Series组成的字典。
In [3]:
# display the last 5 rows data.tail()
Out[3]:
TV | Radio | Newspaper | Sales | |
---|---|---|---|---|
196 | 38.2 | 3.7 | 13.8 | 7.6 |
197 | 94.2 | 4.9 | 8.1 | 9.7 |
198 | 177.0 | 9.3 | 6.4 | 12.8 |
199 | 283.6 | 42.0 | 66.2 | 25.5 |
200 | 232.1 | 8.6 | 8.7 | 13.4 |
In [4]:
# check the shape of the DataFrame(rows, colums) data.shape
Out[4]:
(200, 4)
特征:
- TV:对于一个给定市场中单一产品。用于电视上的广告费用(以千为单位)
- Radio:在广播媒体上投资的广告费用
- Newspaper:用于报纸媒体的广告费用
响应:
- Sales:相应产品的销量
在这个案例中。我们通过不同的广告投入,预測产品销量。由于响应变量是一个连续的值,所以这个问题是一个回归问题。数据集一共同拥有200个观測值,每一组观測相应一个市场的情况。
In [5]:
import seaborn as sns %matplotlib inline
In [6]:
# visualize the relationship between the features and the response using scatterplots sns.pairplot(data, x_vars=[‘TV‘,‘Radio‘,‘Newspaper‘], y_vars=‘Sales‘, size=7, aspect=0.8)
Out[6]:
<seaborn.axisgrid.PairGrid at 0x82dd890>
seaborn的pairplot函数绘制X的每一维度和相应Y的散点图。通过设置size和aspect參数来调节显示的大小和比例。能够从图中看出,TV特征和销量是有比較强的线性关系的,而Radio和Sales线性关系弱一些。Newspaper和Sales线性关系更弱。通过加入一个參数kind=‘reg‘。seaborn能够加入一条最佳拟合直线和95%的置信带。
In [7]:
sns.pairplot(data, x_vars=[‘TV‘,‘Radio‘,‘Newspaper‘], y_vars=‘Sales‘, size=7, aspect=0.8, kind=‘reg‘)
Out[7]:
<seaborn.axisgrid.PairGrid at 0x83b76f0>
2. 线性回归模型
长处:高速;没有调节參数;可轻易解释;可理解
缺点:相比其它复杂一些的模型,其预測准确率不是太高,由于它如果特征和响应之间存在确定的线性关系,这样的如果对于非线性的关系,线性回归模型显然不能非常好的对这样的数据建模。
线性模型表达式: y=β0+β1x1+β2x2+...+βnxn 当中
- y是响应
- β0是截距
- β1是x1的系数,以此类推
在这个案例中: y=β0+β1?TV+β2?Radio+...+βn?Newspaper
(1)使用pandas来构建X和y
- scikit-learn要求X是一个特征矩阵,y是一个NumPy向量
- pandas构建在NumPy之上
- 因此,X能够是pandas的DataFrame,y能够是pandas的Series。scikit-learn能够理解这样的结构
In [8]:
# create a python list of feature names feature_cols = [‘TV‘, ‘Radio‘, ‘Newspaper‘] # use the list to select a subset of the original DataFrame X = data[feature_cols] # equivalent command to do this in one line X = data[[‘TV‘, ‘Radio‘, ‘Newspaper‘]] # print the first 5 rows X.head()
Out[8]:
TV | Radio | Newspaper | |
---|---|---|---|
1 | 230.1 | 37.8 | 69.2 |
2 | 44.5 | 39.3 | 45.1 |
3 | 17.2 | 45.9 | 69.3 |
4 | 151.5 | 41.3 | 58.5 |
5 | 180.8 | 10.8 | 58.4 |
In [9]:
# check the type and shape of X print type(X) print X.shape
<class ‘pandas.core.frame.DataFrame‘> (200, 3)
In [10]:
# select a Series from the DataFrame y = data[‘Sales‘] # equivalent command that works if there are no spaces in the column name y = data.Sales # print the first 5 values y.head()
Out[10]:
1 22.1 2 10.4 3 9.3 4 18.5 5 12.9 Name: Sales, dtype: float64
In [11]:
print type(y) print y.shape
<class ‘pandas.core.series.Series‘> (200,)
(2)构造训练集和測试集
In [12]:
from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
In [14]:
# default split is 75% for training and 25% for testing print X_train.shape print y_train.shape print X_test.shape print y_test.shape
(150, 3) (150,) (50, 3) (50,)
(3)Scikit-learn的线性回归
In [15]:
from sklearn.linear_model import LinearRegression linreg = LinearRegression() linreg.fit(X_train, y_train)
Out[15]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [16]:
print linreg.intercept_ print linreg.coef_
2.87696662232 [ 0.04656457 0.17915812 0.00345046]
In [17]:
# pair the feature names with the coefficients zip(feature_cols, linreg.coef_)
Out[17]:
[(‘TV‘, 0.046564567874150253), (‘Radio‘, 0.17915812245088836), (‘Newspaper‘, 0.0034504647111804482)]
y=2.88+0.0466?TV+0.179?Radio+0.00345?Newspaper
怎样解释各个特征相应的系数的意义?
- 对于给定了Radio和Newspaper的广告投入,假设在TV广告上每多投入1个单位,相应销量将添加0.0466个单位
- 更明白一点,添加其他两个媒体投入固定,在TV广告上没添加1000美元(由于单位是1000美元),销量将添加46.6(由于单位是1000)
(4)预測
In [18]:
y_pred = linreg.predict(X_test)
3. 回归问题的评价測度
对于分类问题,评价測度是准确率,但这样的方法不适用于回归问题。
我们使用针对连续数值的评价測度(evaluation metrics)。
以下介绍三种经常使用的针对回归问题的评价測度
In [21]:
# define true and predicted response values true = [100, 50, 30, 20] pred = [90, 50, 50, 30]
(1)平均绝对误差(Mean Absolute Error, MAE)
1n∑ni=1|yi?yi^|
(2)均方误差(Mean Squared Error, MSE)
1n∑ni=1(yi?yi^)2
(3)均方根误差(Root Mean Squared Error, RMSE)
1n∑ni=1(yi?yi^)2?????????????√
In [24]:
from sklearn import metrics import numpy as np # calculate MAE by hand print "MAE by hand:",(10 + 0 + 20 + 10)/4. # calculate MAE using scikit-learn print "MAE:",metrics.mean_absolute_error(true, pred) # calculate MSE by hand print "MSE by hand:",(10**2 + 0**2 + 20**2 + 10**2)/4. # calculate MSE using scikit-learn print "MSE:",metrics.mean_squared_error(true, pred) # calculate RMSE by hand print "RMSE by hand:",np.sqrt((10**2 + 0**2 + 20**2 + 10**2)/4.) # calculate RMSE using scikit-learn print "RMSE:",np.sqrt(metrics.mean_squared_error(true, pred))
MAE by hand: 10.0 MAE: 10.0 MSE by hand: 150.0 MSE: 150.0 RMSE by hand: 12.2474487139 RMSE: 12.2474487139
计算Sales预測的RMSE
In [26]:
print np.sqrt(metrics.mean_squared_error(y_test, y_pred))
1.40465142303
4. 特征选择
在之前展示的数据中,我们看到Newspaper和销量之间的线性关系比較弱,如今我们移除这个特征。看看线性回归预測的结果的RMSE怎样?
In [27]:
feature_cols = [‘TV‘, ‘Radio‘] X = data[feature_cols] y = data.Sales X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1) linreg.fit(X_train, y_train) y_pred = linreg.predict(X_test) print np.sqrt(metrics.mean_squared_error(y_test, y_pred))
1.38790346994
我们将Newspaper这个特征移除之后,得到RMSE变小了,说明Newspaper特征不适合作为预測销量的特征,于是。我们得到了新的模型。
我们还能够通过不同的特征组合得到新的模型,看看终于的误差是怎样的。