线性模型(1) —— 多元线性回归

提纲:

  1. 线性模型的基本形式
  2. 多元线性回归的损失函数
  3. 最小二乘法求多元线性回归的参数
  4. 最小二乘法和随机梯度下降的区别
  5. 疑问
  6. 学习和参考资料

1.线性模型的基本形式

线性模型是一种形式简单,易于建模,且可解释性很强的模型,它通过一个属性的线性组合来进行预测,其基本的形式为:

式(1)

转换成向量形式之后写成:

式(2)

为什么说其解释性很强呢,是因为模型的权值向量十分直观地表达了样本中每一个属性在预测中的重要度,打个比方,要预测今天是否会下雨,并且已经基于历史数据学习到了模型中的权重向量和截距b,则可以综合考虑各个属性来判断今天是否会下雨:

式(3)

2.多元线性回归的损失函数

在多元线性回归任务中,均方误差是比较常用的一个损失函数,学习的任务就是要基于均方误差最小化来对模型的参数进行求解,损失函数的形式为:

式(4)

其中,m为样本的数量,yi为样本的真实值,f(x)为预测值。

将式(4)中的截距b合并到w,使得新的权重向量增加多了一维,即:w=(w;b)(以下所有的w均是这种形式),相应的每个样本xi也增加了一维,变为xi=(x11,x12,x13···x1d,1)

于是损失函数可以写成以下形式:

式(5)

其中y是样本的标记向量,y=(y1,y2,y3···ym),X为样本矩阵。

3.最小二乘法求多元线性回归的参数

在学习模型的任务中,我们要做到的是让预测值尽量逼近真实值,做到误差最小,而均方误差就是表达这种误差的一种,所以我们要求解多元线性回归模型,就是要求解使均方误差最小化时所对应的参数:

式(6)

其中w*为模型对应的解,即使得均方误差函数最小化时的权重向量。

那么,我们应该如何求w*呢?在这里,我们可以用最小二乘法对模型的参数进行估计,具体做法是:损失函数对需要求解的参数进行求导,并且令其导数为0,求得相应的参数。

在这里,我们需要让式(5)对w求导,在求导之前,我们来看一下两个求导公式:

式(7)

式(8)

下图为详细的求导过程(字迹潦草~~请勿介意)

损失函数对参数进行求导之后,可以求得:

式(9)

令式(9)为零可得:

式(10)

以上即为参数w最优解的闭式解,但我们可以发现w*的计算涉及矩阵的求逆,这样的话就有一些限制了,只有在X^T*X为满秩矩阵或者正定矩阵时,才可以使用以上式子计算。但在现实任务中,X^T*X往往不是满秩矩阵,这样的话就会导致有多个解,并且这多个解都能使均方误差最小化,但并不是所有的解都适合于做预测任务,因为某些解可能会产生过拟合的问题。

4.最小二乘法和随机梯度下降的区别

在学习的过程中,自己有想过这两者的区别,当初大概只知道以下一些东西:

最小二乘法是最小化均方误差,当X^T*X为满秩矩阵时,可以直接求参数的闭式解,而随机梯度下降需要不断地迭代对参数进行更新,并且所求到的解不一定是全局最优解。

但写博客的时候去逛了逛知乎,https://www.zhihu.com/question/20822481  其中用户夏之晨的答案让我茅塞顿开······

5.疑问

线性模型可以依靠权重来判断特征的重要程度,但这个判断究竟有多准确?特征之间的共线性使得特征相互之间会共享一些信息,又怎么判断某个特征的重要程度不是其他特征共享给它的呢?

6.学习和参考资料

周志华老师的《机器学习》

时间: 2024-10-14 16:16:24

线性模型(1) —— 多元线性回归的相关文章

多元线性回归和多项式回归

多项式回归也称多元非线性回归,是指包含两个以上变量的非线性回归模型.对于多元非线性回归模型求解的传统解决方案,仍然是想办法把它转化成标准的线性形式的多元回归模型来处理. 多元非线性回归分析方程 如果自变数与依变数Y皆具非线性关系,或者有的为非线性有的为线性,则选用多元非线性回归方程是恰当的.例如,二元二次多项式回归方程为: 令,及于是上式化为五元一次线性回归方程: 这样以来,便可按多元线性回归分析的方法,计算各偏回归系数,建立二元二次多项式回归方程. -参考文献:智库百科,点击打开 多元二项式回

简单多元线性回归(梯度下降算法与矩阵法)

多元线性回归是最简单的机器学习模型,通过给定的训练数据集,拟合出一个线性模型,进而对新数据做出预测. 对应的模型如下: n: 特征数量. 一般选取残差平方和最小化作为损失函数,对应为: M:训练样本数量. 通过最小化代价损失函数,来求得 值,一般优化的方法有两种,第一是梯度下降算法(Gradient Descent),第二种是矩阵法(The normal equations). 梯度下降算法

【机器学习实战】多元线性回归模型

在许多实际问题中,影响因变量Y的自变量不止一个,通常设为p个,此时无法借助于图形的帮助来确定模型,这里则使用一种最为简单且普遍的模型--多元线性模型来进行回归计算. 1.数学模型 当影响Y值的因素不唯一时,我们可以使用多元线性回归模型: 当未知参数有两个时,我们可以画出此方程的图形表示(此时是一个平面,如图).如果未知数大于2时,则很难把此超平面给画出来. 如上图,为了求得等参数的值,我们由各个样本点(图中为红点)做一条平行于Y轴的直线,此直线交平面方程于一点,然后我们求得此线段的程度,并进行平

R语言:多元线性回归和模型检验

利用swiss数据集进行多元线性回归研究 # 先查看各变量间的散点图 pairs(swiss, panel = panel.smooth, main = "swiss data", col = 3 + (swiss$Catholic > 50)) # 利用全部变量建立多元线性回归 a=lm(Fertility ~ . , data = swiss) summary(a) ## ## Call: ## lm(formula = Fertility ~ ., data = swiss

SPSS--回归-多元线性回归模型案例解析

多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该为: 上图中的 x1,  x2, xp分别代表"自变量"Xp截止,代表有P个自变量,如果有"N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中: 代表随机误差, 其中随机误差分为:可解释的误差 和 不可解释的误差,随机误差必须满足以下四个条件,

多元线性回归的预测

  回归模型除了对参数进行估计和检验,以弄清楚变量的相关性和因果性之外,另一个目的便是进行预测. 那么,由OLS方法的出来的预测结果是否可靠呢?预测结果的可靠性又会受什么因素的影响呢?除了点估计的预测结果,能否有区间估计的预测结果呢? 本文就这些问题,来进行一一探讨  1.引入why? 回归模型除了对参数进行估计和检验,以弄清楚变量的相关性和因果性之外,另一个目的便是进行预测. 那么,由OLS方法的出来的预测结果是否可靠呢?预测结果的可靠性又会受什么因素的影响呢?除了点估计的预测结果,能否有区间

多元线性回归(Linear Regression with multiple variables)与最小二乘(least squat)

1.线性回归介绍 X指训练数据的feature,beta指待估计得参数. 详细见http://zh.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B 使用最小二乘法拟合的普通线性回归是数据建模的基本方法. 令最小二乘项的偏导为0(为0时RSS项最小),求Beta估计值,得到最小二乘的向量形式. 最小二乘其实就是找出一组参数beta使得训练数据到拟合出的数据的欧式距离最小.如下图所示,使所有红点(训练

【R】多元线性回归

R中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整.这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及<R语言实战>的OLS(Ordinary Least Square)回归模型章节来总结一下,诊断多元线性回归模型的操作分析步骤. 1.选择预测变量 因变量比较容易确定,多元回归模型中难在自变量的选择.自变量选择主要可分为向前选择(逐次加使RSS最小的自变量),向后选择(逐

matlab实现一元线性回归和多元线性回归

在回归分析中,如果有两个或两个以上的自变量,就称为多元回归.事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际. 在实际经济问题中,一个变量往往受到多个变量的影响.例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有财富.物价水平.金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个.这样的模型被称为多元线性回归模型. 多元线性回归模型的一般表现形式为 Yi=β0+β1X1i+β