ACL 链路在 Bluetooth 中非常重要,一些重要的应用如 A2DP, 基于 RFCOMM 的应用。BNEP等都要建立 ACL 链路,发送/接收ACL 包。跟大家一起来分析 ACL 包发送/接收流程,以及涉及到的重要 command/event。
(一)
ACL包发送
以下的图是各种应用层使用 L2CAP 的 API:L2CA_DataWrite 发送数据流的过程,此API继续往下走,我仅分析了正常数据流的走向(临时没有考虑别的情况)。
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" />
应用层数据到 L2CAP 的入口
我们假设一个听音乐的场景,我跟大家一起分析音乐数据流 AVDTP 以下层的传送。
在 AVDTP 中,所有的功能想发送 Data,必须调用 avdt_ad_write_req 这个函数,我们就从这个函数入手分析。
1 //当CCB或SCB给l2cap的 Channel 发送数据时,他们终于都会使用到L2CAP的 API:L2CA_Data_Write
2 UINT8 avdt_ad_write_req(UINT8 type, tAVDT_CCB *p_ccb, tAVDT_SCB *p_scb, BT_HDR *p_buf)
3 {
4 UINT8 tcid;
5
6 /* get tcid from type, scb */
7 tcid = avdt_ad_type_to_tcid(type, p_scb);
8
9
10 return L2CA_DataWrite(avdt_cb.ad.rt_tbl[avdt_ccb_to_idx(p_ccb)][tcid].lcid, p_buf);
11 }
12 //L2CA_DataWrite的返回形式有三种,各自是:
13 //1. L2CAP_DW_SUCCESS:此数据写成功
14 //2.L2CAP_DW_CONGESTED:写数据成功,可是当前信道拥堵
15 //3.L2CAP_DW_FAILED:写数据失败
16 UINT8 L2CA_DataWrite (UINT16 cid, BT_HDR *p_data)
17 {
18 L2CAP_TRACE_API2 ("L2CA_DataWrite() CID: 0x%04x Len: %d", cid, p_data->len);
19 return l2c_data_write (cid, p_data, L2CAP_FLUSHABLE_CH_BASED);
20 }
当我们的音乐数据流到达 l2c_data_write 这个函数时。标志数据流正式进入到L2CAP层。
我们在以下的源代码中深入分析 l2c_data_write 这个函数。
l2c_data_write 这个函数做的事情主要有:
- 依据參数 cid(Channel ID) 找到 相应的 ccb(Channel Control Block), 找不到返回 L2CAP_DW_FAILED
- 假设測试者 打开 TESTER 这个宏,发送随意数据,当数据大小 大于 MTU 最大值。也会返回 L2CAP_DW_FAILED
- 通过检查 p_ccb->cong_sent 字段,TRUE,则说明当前 Channel 已经拥挤。此时L2CAP的这个Channel不在接收数据,返回 L2CAP_DW_FAILED
- 以上三个条件都通过,说明数据可发送,将数据通过 l2c_csm_execute 继续处理。进入 l2c_csm_execute 函数,标志着这笔数据已经成功交给 l2CAP 来处理,与上层已经没有关系了。
- l2c_csm_execute 函数运行结束后。再次检查 p_ccb->cong_sent 字段,看看当前的 Channel 是否拥挤,假设拥挤则告诉上层 L2CAP_DW_CONGESTED。否则返回 L2CAP_DW_SUCCESS,表示数据已经成功发送。
1 //返回的数据跟上面的 L2CA_DataWrite 作用同样
2 UINT8 l2c_data_write (UINT16 cid, BT_HDR *p_data, UINT16 flags)
3 {
4 tL2C_CCB *p_ccb;
5
6 //遍历l2cb.ccb_pool,通过Channel ID找到相应的Channel Control Block
7 //l2cu_find_ccb_by_cid 见以下源代码凝视
8 if ((p_ccb = l2cu_find_ccb_by_cid (NULL, cid)) == NULL)
9 {
10 L2CAP_TRACE_WARNING1 ("L2CAP - no CCB for L2CA_DataWrite, CID: %d", cid);
11 GKI_freebuf (p_data);
12 return (L2CAP_DW_FAILED);
13 }
14
15 #ifndef TESTER /* Tester may send any amount of data. otherwise sending message
16 bigger than mtu size of peer is a violation of protocol */
17 if (p_data->len > p_ccb->peer_cfg.mtu)
18 {
19 L2CAP_TRACE_WARNING1 ("L2CAP - CID: 0x%04x cannot send message bigger than peer‘s mtu size", cid);
20 GKI_freebuf (p_data);
21 return (L2CAP_DW_FAILED);
22 }
23 #endif
24
25 /* channel based, packet based flushable or non-flushable */
26 //Bluedroid中默认的是 L2CAP_FLUSHABLE_CH_BASED
27 //这个 layer_specific 在 数据发送的 l2c_link_send_to_lower 中表示 ACL包分包 个数
28 p_data->layer_specific = flags;
29
30 //发现本 Channel 已经拥堵,直接返回L2CAP_DW_FAILED 告诉上层等会再发数据
31 //当几个应用 共用 此 Channel 可能会出现这样的情况
32 if (p_ccb->cong_sent)
33 {
34 L2CAP_TRACE_ERROR3 ("L2CAP - CID: 0x%04x cannot send, already congested xmit_hold_q.count: %u buff_quota: %u",
35 p_ccb->local_cid, p_ccb->xmit_hold_q.count, p_ccb->buff_quota);
36
37 GKI_freebuf (p_data);
38 return (L2CAP_DW_FAILED);
39 }
40 //毫无疑问啦,这个函数就是我们继续须要分析的函数
41 l2c_csm_execute (p_ccb, L2CEVT_L2CA_DATA_WRITE, p_data);
42
43 //已经将上层的这笔数据发送完,假设此 Channel 拥挤了(之前发送这笔包还没拥挤)
44 //返回 L2CAP_DW_CONGESTED 告诉上层当前信道拥挤,你要给我L2CAP层发数据,是不发下来的
45 if (p_ccb->cong_sent)
46 return (L2CAP_DW_CONGESTED);
47
48 //成功发送,而且此时 Channel 并不拥挤
49 return (L2CAP_DW_SUCCESS);
50 }
51
52 //通过 Channel ID 找到 Channel Control Block
53 tL2C_CCB *l2cu_find_ccb_by_cid (tL2C_LCB *p_lcb, UINT16 local_cid)
54 {
55 tL2C_CCB *p_ccb = NULL;
56 #if (L2CAP_UCD_INCLUDED == TRUE)
57 UINT8 xx;
58 #endif
59
60 if (local_cid >= L2CAP_BASE_APPL_CID) //大于或等于 0x0040 说明不是 Fixed Channel
61 {
62 /* find the associated CCB by "index" */
63 local_cid -= L2CAP_BASE_APPL_CID;
64
65 if (local_cid >= MAX_L2CAP_CHANNELS)
66 return NULL;
67
68 p_ccb = l2cb.ccb_pool + local_cid; //直接通过地址偏移找到
69
70 /* make sure the CCB is in use */
71 if (!p_ccb->in_use)
72 {
73 p_ccb = NULL;
74 }
75 /* make sure it‘s for the same LCB */
76 else if (p_lcb && p_lcb != p_ccb->p_lcb)
77 {
78 p_ccb = NULL;
79 }
80 }
81 #if (L2CAP_UCD_INCLUDED == TRUE) //默认是关闭的,既然从上层来的都是 数据包了,我觉得不会用到 Fixed Channel
82 else
83 {
84 /* searching fixed channel */
85 p_ccb = l2cb.ccb_pool;
86 for ( xx = 0; xx < MAX_L2CAP_CHANNELS; xx++ )
87 {
88 if ((p_ccb->local_cid == local_cid)
89 &&(p_ccb->in_use)
90 &&(p_lcb == p_ccb->p_lcb))
91 break;
92 else
93 p_ccb++;
94 }
95 if ( xx >= MAX_L2CAP_CHANNELS )
96 return NULL;
97 }
98 #endif
99
100 return (p_ccb);
101 }
(二)
上一节讲了数据流入口。本文分析L2CAP的处理函数。
L2CAP层的处理
我们的音乐数据。通过 L2CAP 入口函数 l2c_data_write 的层层“考验”。已经顺利进入到 L2CAP 里了,以下我们来看看 L2CAP 层详细是怎么处理数据的。
首先我们进入了 L2CAP 层的状态机。
1 void l2c_csm_execute (tL2C_CCB *p_ccb, UINT16 event, void *p_data)
2 {
3 switch (p_ccb->chnl_state)
4 {
5 case CST_CLOSED:
6 l2c_csm_closed (p_ccb, event, p_data);
7 break;
8
9 case CST_ORIG_W4_SEC_COMP:
10 l2c_csm_orig_w4_sec_comp (p_ccb, event, p_data);
11 break;
12
13 case CST_TERM_W4_SEC_COMP:
14 l2c_csm_term_w4_sec_comp (p_ccb, event, p_data);
15 break;
16
17 case CST_W4_L2CAP_CONNECT_RSP:
18 l2c_csm_w4_l2cap_connect_rsp (p_ccb, event, p_data);
19 break;
20
21 case CST_W4_L2CA_CONNECT_RSP:
22 l2c_csm_w4_l2ca_connect_rsp (p_ccb, event, p_data);
23 break;
24
25 case CST_CONFIG:
26 l2c_csm_config (p_ccb, event, p_data);
27 break;
28
29 case CST_OPEN:
30 l2c_csm_open (p_ccb, event, p_data);
31 break;
32
33 case CST_W4_L2CAP_DISCONNECT_RSP:
34 l2c_csm_w4_l2cap_disconnect_rsp (p_ccb, event, p_data);
35 break;
36
37 case CST_W4_L2CA_DISCONNECT_RSP:
38 l2c_csm_w4_l2ca_disconnect_rsp (p_ccb, event, p_data);
39 break;
40
41 default:
42 break;
43 }
44 }
详细的 Channel 状态信息例如以下
1 typedef enum
2 {
3 CST_CLOSED, /* Channel is in clodes state */
4 CST_ORIG_W4_SEC_COMP, /* Originator waits security clearence */
5 CST_TERM_W4_SEC_COMP, /* Acceptor waits security clearence */
6 CST_W4_L2CAP_CONNECT_RSP, /* Waiting for peer conenct response */
7 CST_W4_L2CA_CONNECT_RSP, /* Waiting for upper layer connect rsp */
8 CST_CONFIG, /* Negotiating configuration */
9 CST_OPEN, /* Data transfer state */
10 CST_W4_L2CAP_DISCONNECT_RSP, /* Waiting for peer disconnect rsp */
11 CST_W4_L2CA_DISCONNECT_RSP /* Waiting for upper layer disc rsp */
12 } tL2C_CHNL_STATE;
l2c_csm_execute 函数通过 p_ccb 中的 chnl_state 字段,来确定接下来数据包的走向。例如以下图所看到的:
- CST_CLOSED 状态:这个 case 处理 Channel 处于 CLOSED 状态的事件。这个状态仅仅存在于 L2CAP 的 Link 初始建立过程中。
- 假设发现事件是 L2CEVT_LP_DISCONNECT_IND,则当前 Link 已经断开。则释放当前 Channel的 ccb;
- 若事件是 L2CEVT_LP_CONNECT_CFM,则置 p_ccb->chnl_state 为 CST_ORIG_W4_SEC_COMP 状态,以下会接着介绍这个。
- 假设是 L2CEVT_LP_CONNECT_CFM_NEG 则说明当前 Link 失败,
- 假设是 L2CEVT_SEC_COMP 则说明 Security 已经清除成功。
- 若是 L2CEVT_L2CA_CONNECT_REQ 则说明 来自上层的 connect 请求。假设当前处于 sniff 状态,要先取消 sniff。
- L2CEVT_SEC_COMP_NEG 说明 Security 失败,清除当前 CCB,返回
- L2CEVT_L2CAP_CONNECT_REQ 说明是 Peer connect request。既然成功连接了。结束掉 timer
- L2CEVT_L2CA_DATA_WRITE,假设我们的数据从上层经过这里,而且是 CST_CLOSED,由于当前的 Channel 没有建立好,而且上层已经将数据丢给L2CAP了,仅仅能将数据丢弃处理了(数据流不能逆向)。
- L2CEVT_L2CA_DISCONNECT_REQ,上层想断开链接,会使用这个 Event来处理。
- CST_ORIG_W4_SEC_COMP 状态:Originator(我的理解是 发起 link 建立的应用)等待 security 的间隙,这个间隙须要处理的事件。跟 CST_CLOSED 差点儿相同,源代码非常easy读,这里不再次做分析。注意。假设是 L2CEVT_SEC_COMP 事件(跟安全相关),会把 p_ccb->chnl_state 置为 CST_W4_L2CAP_CONNECT_RSP
- CST_TERM_W4_SEC_COMP状态:Acceptor(接收者)等待 security 的间隙,源代码易读,不再详细展开分析,注意一个事件 L2CEVT_SEC_COMP 的处理,会将 p_ccb->chnl_state 置为 CST_W4_L2CA_CONNECT_RSP
- CST_W4_L2CAP_CONNECT_RSP: 经过 2 或 3 这个关于安全链接的步骤,当然要等待 Peer connect的回应(Response)。
分为 获取 peer connect的 confirm、pending、rejected connection等信息。作进一步的推断。
- CST_CONFIG:商讨配置的过程。
- CST_OPEN:Channel 处于 OPEN 状态,我们能够发送上层传过来的数据。我们的音乐数据就是从这个 case 里发出去的。
- CST_W4_L2CAP_DISCONNECT_RSP:等待 peer(对方设备)断开链接的 Response
- CST_W4_L2CA_DISCONNECT_RSP:等待上层 disc rsp
分析了这么一大堆,我们的听音乐那那笔数据包,走的是 CST_OPEN 这个case。由于别的几个 case 在link 建立完毕时就走完了。
(三)
我们的音乐数据包走的是 CST_OPEN 这个 case。这个 case 调用的是 l2c_csm_open 这个函数,接下来我们继续分析这个函数。
我们的音乐数据包在函数 l2c_csm_open 中流转,经过各种选择和推断。最后走的是 L2CEVT_L2CA_DATA_WRITE 这个 case。
这个 case 调用了 l2c_enqueue_peer_data 让数据进入到当前 ccb 的 xmit_hold_q 队列中,暂存此数据包。l2c_link_check_send_pkts 这个函数发送数据包。以下我们会继续分析这两个函数。
1 //l2c_csm_open 处理 Channel 处于 OPEN 状态下的各种 Event
2 static void l2c_csm_open (tL2C_CCB *p_ccb, UINT16 event, void *p_data)
3 {
4 UINT16 local_cid = p_ccb->local_cid;
5 tL2CAP_CFG_INFO *p_cfg;
6 tL2C_CHNL_STATE tempstate;
7 UINT8 tempcfgdone;
8 UINT8 cfg_result;
9
10 #if (BT_TRACE_VERBOSE == TRUE)
11 L2CAP_TRACE_EVENT2 ("L2CAP - LCID: 0x%04x st: OPEN evt: %s", p_ccb->local_cid, l2c_csm_get_event_name (event));
12 #else
13 L2CAP_TRACE_EVENT1 ("L2CAP - st: OPEN evt: %d", event);
14 #endif
15
16 #if (L2CAP_UCD_INCLUDED == TRUE) //默认 UCD 是关闭的
17 if ( local_cid == L2CAP_CONNECTIONLESS_CID )
18 {
19 /* check if this event can be processed by UCD */
20 if ( l2c_ucd_process_event (p_ccb, event, p_data) )
21 {
22 /* The event is processed by UCD state machine */
23 return;
24 }
25 }
26 #endif
27
28 switch (event)
29 {
30 case L2CEVT_LP_DISCONNECT_IND: //Link 都断开连接了,自然 Channel也没有存在的必要了,各种清除 CCB 的工作
31 L2CAP_TRACE_API1 ("L2CAP - Calling Disconnect_Ind_Cb(), CID: 0x%04x No Conf Needed", p_ccb->local_cid);
32 l2cu_release_ccb (p_ccb);//释放 当前的 CCB
33 if (p_ccb->p_rcb)
34 (*p_ccb->p_rcb->api.pL2CA_DisconnectInd_Cb)(local_cid, FALSE);
35 break;
36
37 case L2CEVT_LP_QOS_VIOLATION_IND: /* QOS violation */
38 /* Tell upper layer. If service guaranteed, then clear the channel */
39 if (p_ccb->p_rcb->api.pL2CA_QoSViolationInd_Cb)
40 (*p_ccb->p_rcb->api.pL2CA_QoSViolationInd_Cb)(p_ccb->p_lcb->remote_bd_addr);
41 break;
42
43 case L2CEVT_L2CAP_CONFIG_REQ: /* Peer config request */
44 p_cfg = (tL2CAP_CFG_INFO *)p_data;
45
46 tempstate = p_ccb->chnl_state;
47 tempcfgdone = p_ccb->config_done;
48 p_ccb->chnl_state = CST_CONFIG; //假设数据流中的数据是 L2CEVT_L2CAP_CONFIG_REQ。当然要转到 CST_CONFIG中继续处理
49 p_ccb->config_done &= ~CFG_DONE_MASK;
50 //启动一个 timer 。一段时间后。查看 cfg 的状态
51 //假设配置处于 L2CAP_PEER_CFG_UNACCEPTABLE,继续尝试配置
52 //假设配置处于断开状态。那当前 Channel 直接断开连接。
53 btu_start_timer (&p_ccb->timer_entry, BTU_TTYPE_L2CAP_CHNL, L2CAP_CHNL_CFG_TIMEOUT);
54
55 if ((cfg_result = l2cu_process_peer_cfg_req (p_ccb, p_cfg)) == L2CAP_PEER_CFG_OK)
56 {
57 (*p_ccb->p_rcb->api.pL2CA_ConfigInd_Cb)(p_ccb->local_cid, p_cfg);
58 }
59
60 /* Error in config parameters: reset state and config flag */
61 else if (cfg_result == L2CAP_PEER_CFG_UNACCEPTABLE)
62 {
63 btu_stop_timer(&p_ccb->timer_entry);
64 p_ccb->chnl_state = tempstate;
65 p_ccb->config_done = tempcfgdone;
66 l2cu_send_peer_config_rsp (p_ccb, p_cfg);
67 }
68 else /* L2CAP_PEER_CFG_DISCONNECT */
69 {
70 /* Disconnect if channels are incompatible
71 * Note this should not occur if reconfigure
72 * since this should have never passed original config.
73 */
74 l2cu_disconnect_chnl (p_ccb);
75 }
76 break;
77
78 case L2CEVT_L2CAP_DISCONNECT_REQ: /* Peer disconnected request */
79 // btla-specific ++
80 /* Make sure we are not in sniff mode */
81 #if BTM_PWR_MGR_INCLUDED == TRUE
82 {
83 tBTM_PM_PWR_MD settings;
84 settings.mode = BTM_PM_MD_ACTIVE;
85 BTM_SetPowerMode (BTM_PM_SET_ONLY_ID, p_ccb->p_lcb->remote_bd_addr, &settings);
86 }
87 #else
88 BTM_CancelSniffMode (p_ccb->p_lcb->remote_bd_addr);
89 #endif
90 // btla-specific --
91
92 p_ccb->chnl_state = CST_W4_L2CA_DISCONNECT_RSP; //Peer 发送 Disconnect,我们要对此发 Response
93 btu_start_timer (&p_ccb->timer_entry, BTU_TTYPE_L2CAP_CHNL, L2CAP_CHNL_DISCONNECT_TOUT);
94 L2CAP_TRACE_API1 ("L2CAP - Calling Disconnect_Ind_Cb(), CID: 0x%04x Conf Needed", p_ccb->local_cid);
95 (*p_ccb->p_rcb->api.pL2CA_DisconnectInd_Cb)(p_ccb->local_cid, TRUE);
96 break;
97
98 case L2CEVT_L2CAP_DATA: /* Peer data packet rcvd */
99 //收到 Peer 传来的数据。当然要把这个数据通过回调送到上层应用去
100 //pL2CA_DataInd_Cb 中定义了回调,交给上层处理收到的数据
101 (*p_ccb->p_rcb->api.pL2CA_DataInd_Cb)(p_ccb->local_cid, (BT_HDR *)p_data);
102 break;
103
104 case L2CEVT_L2CA_DISCONNECT_REQ: /* Upper wants to disconnect */
105 /* Make sure we are not in sniff mode */
106 #if BTM_PWR_MGR_INCLUDED == TRUE
107 {
108 tBTM_PM_PWR_MD settings;
109 settings.mode = BTM_PM_MD_ACTIVE;
110 BTM_SetPowerMode (BTM_PM_SET_ONLY_ID, p_ccb->p_lcb->remote_bd_addr, &settings);
111 }
112 #else
113 BTM_CancelSniffMode (p_ccb->p_lcb->remote_bd_addr);
114 #endif
115
116 l2cu_send_peer_disc_req (p_ccb);
117 p_ccb->chnl_state = CST_W4_L2CAP_DISCONNECT_RSP;
118 btu_start_timer (&p_ccb->timer_entry, BTU_TTYPE_L2CAP_CHNL, L2CAP_CHNL_DISCONNECT_TOUT);
119 break;
120
121 case L2CEVT_L2CA_DATA_WRITE: /* Upper layer data to send */ // mark l2c
122 //上层将数据发送给下层
123 //我们的音乐数据就是走这个 case(为什么?看整个函数的參数就明确了)
124 //首先将数据入队。以下会展开分析这个函数
125 l2c_enqueue_peer_data (p_ccb, (BT_HDR *)p_data);
126 //终于调用 l2c_link_check_send_pkts 来发送我们的音乐数据包
127 l2c_link_check_send_pkts (p_ccb->p_lcb, NULL, NULL);
128 break;
129
130 case L2CEVT_L2CA_CONFIG_REQ: /* Upper layer config req */
131 p_ccb->chnl_state = CST_CONFIG;
132 p_ccb->config_done &= ~CFG_DONE_MASK;
133 l2cu_process_our_cfg_req (p_ccb, (tL2CAP_CFG_INFO *)p_data);
134 l2cu_send_peer_config_req (p_ccb, (tL2CAP_CFG_INFO *)p_data);
135 btu_start_timer (&p_ccb->timer_entry, BTU_TTYPE_L2CAP_CHNL, L2CAP_CHNL_CFG_TIMEOUT);
136 break;
137
138 case L2CEVT_TIMEOUT:
139 /* Process the monitor/retransmission time-outs in flow control/retrans mode */
140 if (p_ccb->peer_cfg.fcr.mode == L2CAP_FCR_ERTM_MODE)
141 l2c_fcr_proc_tout (p_ccb);
142 break;
143
144 case L2CEVT_ACK_TIMEOUT:
145 l2c_fcr_proc_ack_tout (p_ccb);
146 break;
147 }
148 }
OK。我们下篇将分析数据包入队列的函数。
(四)
本文讲的是 Bluedroid 中数据包在 L2CAP 层入队列的一系列函数源代码分析。
l2c_enqueue_peer_data 函数的主要作用是将我们的音乐数据包入数据发送队列以及处理 FCR segmentation 和当前 Channel 是否拥堵的检測。我们来详细读一下他的源代码。其主要做了这么几件事:1. 组装好 p_buf 并入 当前 CCB 的 xmit_hold_q 队列。2. 检查当前 Channel 拥堵情况。
3. 当前 Link 支持 RR,则检查当前ACL数据包所在 Channel 的权限,假设当前 CCB 中的权限高于 RR,则把 RR 中的权限设置为跟 CCB 同样。
4. 若 Link 上没有发送窗体,则将 l2cb.check_round_robin 置为TRUE。下一次须要 RR
1 void l2c_enqueue_peer_data (tL2C_CCB *p_ccb, BT_HDR *p_buf)
2 {
3 UINT8 *p;
4
5 if (p_ccb->peer_cfg.fcr.mode != L2CAP_FCR_BASIC_MODE)
6 {
7 p_buf->event = 0;
8 }
9 else
10 {
11 /* Save the channel ID for faster counting */
12 p_buf->event = p_ccb->local_cid;
13
14 /* Step back to add the L2CAP header */
15 p_buf->offset -= L2CAP_PKT_OVERHEAD;
16 p_buf->len += L2CAP_PKT_OVERHEAD;
17
18 /* Set the pointer to the beginning of the data */
19 p = (UINT8 *)(p_buf + 1) + p_buf->offset;
20
21 /* Now the L2CAP header */
22 UINT16_TO_STREAM (p, p_buf->len - L2CAP_PKT_OVERHEAD);
23 UINT16_TO_STREAM (p, p_ccb->remote_cid);
24 }
25
26 GKI_enqueue (&p_ccb->xmit_hold_q, p_buf);//真正将组装好的 p_buf 入队
27
28 l2cu_check_channel_congestion (p_ccb); //检測当前 Channel 拥堵情况,以下会继续分析这个函数
29
30 #if (L2CAP_ROUND_ROBIN_CHANNEL_SERVICE == TRUE)
31 /* if new packet is higher priority than serving ccb and it is not overrun */
32 if (( p_ccb->p_lcb->rr_pri > p_ccb->ccb_priority ) //当前数据包所在Channel的权限
33 &&( p_ccb->p_lcb->rr_serv[p_ccb->ccb_priority].quota > 0))
34 {
35 /* send out higher priority packet */
36 p_ccb->p_lcb->rr_pri = p_ccb->ccb_priority;//当前要发送的数据的Channel。设置为ccb_priority,比原来权限要高。
37 }
38 #endif
39
40 //假设当前 link 上的 link_xmit_quota ==0(link上的发送窗体为0)。那么有必要做一次 RR
41 if (p_ccb->p_lcb->link_xmit_quota == 0)
42 l2cb.check_round_robin = TRUE;
43 }
44
45 //check if any change in congestion status
46
47 void l2cu_check_channel_congestion (tL2C_CCB *p_ccb)
48 {
49 UINT16 q_count = p_ccb->xmit_hold_q.count; //当前 CCB 中 发送数据队列中数据包的总数
50
51 #if (L2CAP_UCD_INCLUDED == TRUE)
52 if ( p_ccb->local_cid == L2CAP_CONNECTIONLESS_CID )
53 {
54 q_count += p_ccb->p_lcb->ucd_out_sec_pending_q.count;
55 }
56 #endif
57
58 /* If the CCB queue limit is subject to a quota, check for congestion */
59
60 /* if this channel has outgoing traffic */
61 if ((p_ccb->p_rcb)&&(p_ccb->buff_quota != 0))
62 {
63 /* If this channel was congested */
64 if ( p_ccb->cong_sent ) //当前 Channel 的这个字段为TRUE,是否真正拥堵。我们要继续推断
65 {
66 /* If the channel is not congested now, tell the app */
67 //p_ccb->buff_quota = quota_per_weighted_chnls[HCI_ACL_POOL_ID] * p_ccb->tx_data_rate
68 //在函数 l2c_link_adjust_chnl_allocation 中配置此值
69 if (q_count <= (p_ccb->buff_quota / 2))//q_count为 CCB 中的xmit_hold_q
70 {
71 p_ccb->cong_sent = FALSE; //当前CCB中的 xmit_hold_q 小于 buffer_quota 值的一半,就觉得已经不拥堵了
72 if (p_ccb->p_rcb->api.pL2CA_CongestionStatus_Cb)
73 {
74 L2CAP_TRACE_DEBUG3 ("L2CAP - Calling CongestionStatus_Cb (FALSE), CID: 0x%04x xmit_hold_q.count: %u buff_quota: %u",
75 p_ccb->local_cid, q_count, p_ccb->buff_quota);
76
77 /* Prevent recursive calling */
78 l2cb.is_cong_cback_context = TRUE;
79 (*p_ccb->p_rcb->api.pL2CA_CongestionStatus_Cb)(p_ccb->local_cid, FALSE);
80 l2cb.is_cong_cback_context = FALSE;
81 }
82 #if (L2CAP_UCD_INCLUDED == TRUE)
83 else if ( p_ccb->local_cid == L2CAP_CONNECTIONLESS_CID )//无连接的 CID
84 {
85 if ( p_ccb->p_rcb->ucd.cb_info.pL2CA_UCD_Congestion_Status_Cb )
86 {
87 L2CAP_TRACE_DEBUG3 ("L2CAP - Calling UCD CongestionStatus_Cb (FALSE), SecPendingQ:%u,XmitQ:%u,Quota:%u",
88 p_ccb->p_lcb->ucd_out_sec_pending_q.count,
89 p_ccb->xmit_hold_q.count, p_ccb->buff_quota);
90 p_ccb->p_rcb->ucd.cb_info.pL2CA_UCD_Congestion_Status_Cb( p_ccb->p_lcb->remote_bd_addr, FALSE );
91 }
92 }
93 #endif
94 }
95 }
96 else
97 {
98 /* If this channel was not congested but it is congested now, tell the app */
99 if (q_count > p_ccb->buff_quota) //此时仍然处于拥堵状态
100 {
101 p_ccb->cong_sent = TRUE;
102 if (p_ccb->p_rcb->api.pL2CA_CongestionStatus_Cb)
103 {
104 L2CAP_TRACE_DEBUG3 ("L2CAP - Calling CongestionStatus_Cb (TRUE),CID:0x%04x,XmitQ:%u,Quota:%u",
105 p_ccb->local_cid, q_count, p_ccb->buff_quota);
106
107 (*p_ccb->p_rcb->api.pL2CA_CongestionStatus_Cb)(p_ccb->local_cid, TRUE);
108 }
109 #if (L2CAP_UCD_INCLUDED == TRUE)
110 else if ( p_ccb->local_cid == L2CAP_CONNECTIONLESS_CID )
111 {
112 if ( p_ccb->p_rcb->ucd.cb_info.pL2CA_UCD_Congestion_Status_Cb )
113 {
114 L2CAP_TRACE_DEBUG3 ("L2CAP - Calling UCD CongestionStatus_Cb (TRUE), SecPendingQ:%u,XmitQ:%u,Quota:%u",
115 p_ccb->p_lcb->ucd_out_sec_pending_q.count,
116 p_ccb->xmit_hold_q.count, p_ccb->buff_quota);
117 p_ccb->p_rcb->ucd.cb_info.pL2CA_UCD_Congestion_Status_Cb( p_ccb->p_lcb->remote_bd_addr, TRUE );
118 }
119 }
120 #endif
121 }
122 }
123 }
124 }
(五)
本文分析 L2CAP 底层的数据包发送函数。
l2c_link_check_send_pkts (tL2C_LCB p_lcb, tL2C_CCB p_ccb, BT_HDR *p_buf) 函数的主要作用是:
- 假设 p_buf 不为 null,p_ccb 为null(在signaling状态中。信道是Fixed的) 说明这个 ACL 包是这类 L2CAP 的 command:command reject、configuration request、connection request、connection response、connection response neg、configuration response、configuration reject、disconnect response、echo request、echo response、info request、info response、disconnect request,或者说明这个 ACL 包是 S_frame(Supervisory Frame), 眼下 Bluedroid 中仅仅有这两种情况;然后把这个包放到 p_lcb->link_xmit_data_q 中。注意是当前 Link 上的 link_xmit_data_q,跟 CCB 中的 xmit_hold_q 队列是全然不同的两个队列。
- 检查 l2cb.is_cong_cback_context 字段,假设为 TRUE。说明当前 Link 拥堵,当前发送过程结束。注意,这时候 ACL 包都已经进入队列了,都在等待发送(即在此调用本函数)。
- 若 p_lcb 不为 null 或 p_lcb->link_xmit_quota 不为0:
- 首先检查 p_lcb 的 partial_segment_being_sent(为TRUE,说明 Segment还没发完。底层来保证,所以当前函数返回)
- p_lcb 的 link_state 不为 LST_CONNECTED,说明当前 Link 异常,当前函数返回
- L2C_LINK_CHECK_POWER_MODE 默认是关闭的,关于电源管理的。临时不分析
- 步骤 1 分析知道,我们如今发送的是 当前 Link 上的 link_xmit_data_q 队列里的包,对于 BR/EDR来说,假设条件 l2cb.controller_xmit_window 不为 0(否则没有窗体发送数据包了)而且 p_lcb->sent_not_acked < p_lcb->link_xmit_quota(没回复的包一定要小于当前Link最大发送值),不成立,那么在这里轮询。直到有了发送窗体而且 sent_not_acked < link_xmit_quota 才将数据包交给 l2c_link_send_to_lower 函数做进一步处理。
- 这时,Link 上的数据包已经发送了,若 single_write(断开前最后CCB中的数据处理标志)为false,我们要继续去看看当前 Link 上的每一个 Channel 上的 Queue 中有没有数据包,一旦找到一个 p_buf 数据包,就发送(不会循环找,找到了就返回)
OK,上面流程 1 -> 3 是一个单独的流程, 处理一些 L2CAP command 或 Response 的发送情况。
以下我们再来分析另外一个 case。这三个參数所有为非空的情况,这样的情况仅仅在 L2CAP 发送 disconnect request 命令时出现(关闭当前 Link 要确保相应上层应用的 CCB 中的数据要发完),主要作用是:
- 在函数 l2cu_send_peer_disc_req 中我们看到 CCB 中的数据包直接从 CCB 的 xmit_hold_q 中出队列,设置 ACL 包头就直接交给 l2c_link_check_send_pkts(p_ccb->p_lcb, p_ccb, p_buf2)发送了。
- 看到 l2c_link_check_send_pkts 的三个參数均不为 null,说明我们把当前的 CCB 中 xmit_hold_q 的数据包 当成 Link 上的 link_xmit_data_q 发送出去了(相当于优先发送了),single_write 是一个标志位,代表当前数据包由 CCB -> LCB 取代发送。由于推断了 single_write 这个标志位,程序不会再去 CCB 中找数据包了。
另一种 case 是所有为空的情况,这是触发了 RR 机制所致,正常情况还有发送窗体的情况下。会遍历每一个 Link ,然后先发当前 Link上的 Queue里的数据发送出去,然后再发送 CCB 中 Queue 的数据。
OK。这个函数还剩最后一个 case。就是正常情况下,我们听音乐的数据流发送的情况,这是最常见的一种情况,调用形式为 l2c_link_check_send_pkts (p_lcb, NULL, NULL)。
- 推断当前 Link 是否拥堵。
- 首先看看 Link 上的 link_xmit_data_q 队列有没有数据,有的话发送
- 假设 link_xmit_data_q 没有数据。在看看 Link 上的 CCB,通过 CCB 的链表,找到 CCB 上的队列,一直找,直到找到一个 数据包。发送之。
- 注意:上层在发送数据包,仅仅是调用一下这个函数。至于 是不是这个数据包,那不一定。反正每次上层调用都会发送一个,上层发下来的包总会发出去的。
1 void l2c_link_check_send_pkts (tL2C_LCB *p_lcb, tL2C_CCB *p_ccb, BT_HDR *p_buf)
2 {
3 int xx;
4 BOOLEAN single_write = FALSE; //最后 Link Disc 用来把 CCB 中的数据包放到 Link 上的队列发。速度加快
5 L2CAP_TRACE_DEBUG0(" in func-- l2c_link_check_send_pkts");
6 /* Save the channel ID for faster counting */
7 if (p_buf) //一般数据包都为空,仅仅有发送 L2CAP 发送 command/response 或 发送 S-Frame 才用到
8 {
9 if (p_ccb != NULL) //这个 case 就是 当前 Link 即将断开的情况了
10 {
11 p_buf->event = p_ccb->local_cid;
12 single_write = TRUE; //见上面凝视
13 L2CAP_TRACE_DEBUG0(" l2c_link_check_send_pkts-- p_buf p_ccb not null");
14 }
15 else
16 p_buf->event = 0;
17
18 p_buf->layer_specific = 0;
19 L2CAP_TRACE_DEBUG0("l2c_link_check_send_pkts-- p_buf->layer_specific=0");
20 GKI_enqueue (&p_lcb->link_xmit_data_q, p_buf); //把这个数据包放到 当前 link 上的 link_xmit_data_q队列中
21
22 if (p_lcb->link_xmit_quota == 0){
23 l2cb.check_round_robin = TRUE; // 没有发送窗体了。须要 RR 看看有没有别的数据包能够发送的
24 L2CAP_TRACE_DEBUG0("l2c_link_check_send_pkts-- p_lcb->link_xmit_quota");
25 }
26 }
27
28 /* If this is called from uncongested callback context break recursive calling.
29 ** This LCB will be served when receiving number of completed packet event.
30 */
31 if (l2cb.is_cong_cback_context){//当前 Link 拥堵了,不发送数据包直接返回,差点儿不会发生
32 L2CAP_TRACE_DEBUG0(" l2c_link_check_send_pkts-- l2cd.is_cong_cback_context");
33 return;
34 }
35 /* If we are in a scenario where there are not enough buffers for each link to
36 ** have at least 1, then do a round-robin for all the LCBs
37 */
38 if ( (p_lcb == NULL) || (p_lcb->link_xmit_quota == 0) )
39 {
40 L2CAP_TRACE_DEBUG0("l2c_link_check_send_pkts-- (p_lcb == NULL) ||(p_lcb->link_xmit_quota == 0)");
41 if (p_lcb == NULL)
42 p_lcb = l2cb.lcb_pool;
43 else if (!single_write)
44 p_lcb++;
45
46 /* Loop through, starting at the next */
47 //哎呀,没有足够发送窗体了。在所有的 Link 上做一次 RR
48 for (xx = 0; xx < MAX_L2CAP_LINKS; xx++, p_lcb++)
49 {
50 L2CAP_TRACE_DEBUG1("l2c_link_check_send_pkts--Loop through: xx = %d",xx);
51 /* If controller window is full, nothing to do */
52 if ( (l2cb.controller_xmit_window == 0
53 #if (BLE_INCLUDED == TRUE)
54 && !p_lcb->is_ble_link
55 #endif
56 )
57 #if (BLE_INCLUDED == TRUE)
58 || (p_lcb->is_ble_link && l2cb.controller_le_xmit_window == 0 )
59 #endif
60 || (l2cb.round_robin_unacked >= l2cb.round_robin_quota) )
61 break;
62
63 /* Check for wraparound */
64 if (p_lcb == &l2cb.lcb_pool[MAX_L2CAP_LINKS])
65 p_lcb = &l2cb.lcb_pool[0];
66
67 if ( (!p_lcb->in_use)
68 || (p_lcb->partial_segment_being_sent)
69 || (p_lcb->link_state != LST_CONNECTED)
70 || (p_lcb->link_xmit_quota != 0)
71 || (L2C_LINK_CHECK_POWER_MODE (p_lcb)) )
72 continue;
73
74 //首先从 当前 Link 上的 link_xmit_data_q 中取出数据包并发送
75 if ((p_buf = (BT_HDR *)GKI_dequeue (&p_lcb->link_xmit_data_q)) != NULL)
76 {
77 L2CAP_TRACE_DEBUG0("l2c_link_check_send_pkts--if ((p_buf = (BT_HDR*)GKI_dequeue (&p_lcb->link_xmit_data_q)) != NULL)");
78 l2c_link_send_to_lower (p_lcb, p_buf);
79 }
80 else if (single_write) //假设是 single_write 设置为 TRUE,说明数据包 已经在 link_xmit_data_q 发送了,不是必需在运行以下的 code 了
81 {
82 /* If only doing one write, break out */
83 L2CAP_TRACE_DEBUG0("l2c_link_check_send_pkts--single write is true then break");
84 break;
85 }
86 //Link 上的 Queue 中没有东西能够发送,查找 CCB 中的 Queue,直到找到一个为止。
87 else if ((p_buf = l2cu_get_next_buffer_to_send (p_lcb)) != NULL)
88 {
89 L2CAP_TRACE_DEBUG0("l2c_link_check_send_pkts--(p_buf=l2cu_get_next_buffer_to_send (p_lcb)) != NULL");
90 l2c_link_send_to_lower (p_lcb, p_buf);
91 }
92 }
93
94 /* If we finished without using up our quota, no need for a safety check */
95 #if (BLE_INCLUDED == TRUE)
96 if ( ((l2cb.controller_xmit_window > 0 && !p_lcb->is_ble_link) ||
97 (l2cb.controller_le_xmit_window > 0 && p_lcb->is_ble_link))
98 && (l2cb.round_robin_unacked < l2cb.round_robin_quota) )
99 #else
100 if ( (l2cb.controller_xmit_window > 0)
101 && (l2cb.round_robin_unacked < l2cb.round_robin_quota) )
102
103 #endif
104 l2cb.check_round_robin = FALSE;
105 }
106 else /* if this is not round-robin service */
107 {
108 /* If a partial segment is being sent, can‘t send anything else */
109 if ( (p_lcb->partial_segment_being_sent)
110 || (p_lcb->link_state != LST_CONNECTED)
111 || (L2C_LINK_CHECK_POWER_MODE (p_lcb)) )
112 return;
113
114 /* See if we can send anything from the link queue */
115 #if (BLE_INCLUDED == TRUE)
116 while ( ((l2cb.controller_xmit_window != 0 && !p_lcb->is_ble_link) ||
117 (l2cb.controller_le_xmit_window != 0 && p_lcb->is_ble_link))
118 && (p_lcb->sent_not_acked < p_lcb->link_xmit_quota))
119 #else
120 while ( (l2cb.controller_xmit_window != 0)
121 && (p_lcb->sent_not_acked < p_lcb->link_xmit_quota))
122 #endif
123 {
124 if ((p_buf = (BT_HDR *)GKI_dequeue (&p_lcb->link_xmit_data_q)) == NULL)//发送Link上的数据包
125 break;
126
127 if (!l2c_link_send_to_lower (p_lcb, p_buf))
128 break;
129 }
130
131 if (!single_write)//确保不是在 链路 disc 状态下
132 {
133 /* See if we can send anything for any channel */
134 #if (BLE_INCLUDED == TRUE)
135 while ( ((l2cb.controller_xmit_window != 0 && !p_lcb->is_ble_link) ||
136 (l2cb.controller_le_xmit_window != 0 && p_lcb->is_ble_link))
137 && (p_lcb->sent_not_acked < p_lcb->link_xmit_quota))
138 #else
139 while ((l2cb.controller_xmit_window != 0) && (p_lcb->sent_not_acked < p_lcb->link_xmit_quota))
140 #endif
141 {
142 if ((p_buf = l2cu_get_next_buffer_to_send (p_lcb)) == NULL)//找到一个数据包来发送
143 break;
144
145 if (!l2c_link_send_to_lower (p_lcb, p_buf))
146 break;
147 }
148 }
149
150 /* There is a special case where we have readjusted the link quotas and */
151 /* this link may have sent anything but some other link sent packets so */
152 /* so we may need a timer to kick off this link‘s transmissions. */
153 if ( (p_lcb->link_xmit_data_q.count) && (p_lcb->sent_not_acked < p_lcb->link_xmit_quota) )
154 L2CAP_TRACE_DEBUG0("l2c_link_check_send_pkts--a timer to kick off this link‘s transmissions");
155 btu_start_timer (&p_lcb->timer_entry, BTU_TTYPE_L2CAP_LINK, L2CAP_LINK_FLOW_CONTROL_TOUT);
156 }
157
158 }
终于 l2c_link_check_send_pkts 把数据包交给了 l2c_link_send_to_lower 来做处理,我们的音乐数据包终于也被从某个 CCB 中的队列出队列给了 l2c_link_send_to_lower。l2c_link_send_to_lower 主要做了这些事情:
- 假设当前数据包 p_buf 的长度小于 ACL 包的最大值,sent_not_acked 加1,整个 L2CAP 的 controller_xmit_window 减1。然后通过 L2C_LINK_SEND_ACL_DATA 将此数据包发送出去。
- 假设当前数据包 p_buf 的长度大于 ACL 包的最大值,先看看能分成几个分包(为了求的几个窗体能容下),然后窗体值减掉这些分包个数,然后将整个数据包交给 L2C_LINK_SEND_ACL_DATA (大于ACL包长度),详细分包发送由 H5(串口) 部分来负责。
1 /*******************************************************************************
2 **
3 ** Function l2c_link_send_to_lower
4 **
5 ** Description This function queues the buffer for HCI transmission
6 **
7 ** Returns TRUE for success, FALSE for fail
8 **
9 *******************************************************************************/
10 static BOOLEAN l2c_link_send_to_lower (tL2C_LCB *p_lcb, BT_HDR *p_buf)
11 {
12 UINT16 num_segs;
13 UINT16 xmit_window, acl_data_size;
14 L2CAP_TRACE_DEBUG0("l2c_link_send_to_lower");
15 #if (BLE_INCLUDED == TRUE)
16 if ((!p_lcb->is_ble_link && (p_buf->len <= btu_cb.hcit_acl_pkt_size)) ||
17 (p_lcb->is_ble_link && (p_buf->len <= btu_cb.hcit_ble_acl_pkt_size)))
18 #else
19 if (p_buf->len <= btu_cb.hcit_acl_pkt_size) //一般都是走这条路径,p_buf一般不会超过 ACL 长度最大值
20 #endif
21 {
22 if (p_lcb->link_xmit_quota == 0){ // Link 上没有窗体了,controller_xmit_window 窗体还是有的。此时就是 round_roubin_unack了(由于上面的数据已经下来了,必须得发送)
23 L2CAP_TRACE_DEBUG0("l2c_link_send_to_lower--if (p_lcb->link_xmit_quota == 0)");
24 l2cb.round_robin_unacked++;
25 L2CAP_TRACE_DEBUG1("l2c_link_send_to_lower--l2cb.round_robin_unacked=%d",l2cb.round_robin_unacked);
26 }
27 p_lcb->sent_not_acked++; //整个 Link 已经发送可是没有回复的数据包个数
28 L2CAP_TRACE_DEBUG1("l2c_link_send_to_lower--p_lcb->sent_not_acked:",p_lcb->sent_not_acked);
29 p_buf->layer_specific = 0;
30
31 #if (BLE_INCLUDED == TRUE)
32 if (p_lcb->is_ble_link)
33 {
34 l2cb.controller_le_xmit_window--;
35 L2C_LINK_SEND_BLE_ACL_DATA (p_buf);
36 }
37 else
38 #endif
39 {
40 l2cb.controller_xmit_window--; //当前 controller 发送窗体减1
41 L2CAP_TRACE_DEBUG1("l2c_link_send_to_lower--,l2cb.controller_xmit_window=%d",l2cb.controller_xmit_window);
42 L2CAP_TRACE_DEBUG0("l2c_link_send_to_lower--L2C_LINK_SEND_ACL_DATA");
43 L2C_LINK_SEND_ACL_DATA (p_buf); //发送当前这个数据包
44 }
45 }
46 else
47 {
48 #if BLE_INCLUDED == TRUE
49 if (p_lcb->is_ble_link)
50 {
51 acl_data_size = btu_cb.hcit_ble_acl_data_size;
52 xmit_window = l2cb.controller_le_xmit_window;
53
54 }
55 else
56 #endif
57 {
58 acl_data_size = btu_cb.hcit_acl_data_size;//ACL 包额度最大值
59 xmit_window = l2cb.controller_xmit_window; //controller眼下为止的可用窗体
60 }
61 num_segs = (p_buf->len - HCI_DATA_PREAMBLE_SIZE + acl_data_size - 1) / acl_data_size;
62 L2CAP_TRACE_DEBUG3("l2c_link_send_to_lower-- num_segs:%d, acl_data_size:%d,xmit_window=%d", num_segs,acl_data_size, xmit_window);
63
64 /* If doing round-robin, then only 1 segment each time */
65 if (p_lcb->link_xmit_quota == 0)
66 {
67 num_segs = 1;
68 p_lcb->partial_segment_being_sent = TRUE;
69 }
70 else
71 {
72 /* Multi-segment packet. Make sure it can fit */
73 if (num_segs > xmit_window)
74 {
75 num_segs = xmit_window;//分包个数比 controller 窗体的个数还多,仅仅能发 controller 个数的包
76 p_lcb->partial_segment_being_sent = TRUE; //标志位,还有分包,须要继续发送,Btu_task 中有个 Event 就是处理分包的
77 }
78
79 if (num_segs > (p_lcb->link_xmit_quota - p_lcb->sent_not_acked))
80 {
81 num_segs = (p_lcb->link_xmit_quota - p_lcb->sent_not_acked);
82 p_lcb->partial_segment_being_sent = TRUE;
83 }
84 }
85
86 p_buf->layer_specific = num_segs;
87 #if BLE_INCLUDED == TRUE
88 if (p_lcb->is_ble_link)
89 {
90 l2cb.controller_le_xmit_window -= num_segs;
91
92 }
93 else
94 #endif
95 l2cb.controller_xmit_window -= num_segs;//分包占用的窗体数
96
97 if (p_lcb->link_xmit_quota == 0)
98 l2cb.round_robin_unacked += num_segs;
99
100 p_lcb->sent_not_acked += num_segs;
101 #if BLE_INCLUDED == TRUE
102 if (p_lcb->is_ble_link)
103 {
104 L2C_LINK_SEND_BLE_ACL_DATA(p_buf);
105 }
106 else
107 #endif
108 {
109 L2C_LINK_SEND_ACL_DATA (p_buf);//发送数据包
110 }
111 }
112
113 #if (L2CAP_HCI_FLOW_CONTROL_DEBUG == TRUE)
114 #if (BLE_INCLUDED == TRUE)
115 if (p_lcb->is_ble_link)
116 {
117 L2CAP_TRACE_DEBUG6 ("TotalWin=%d,Hndl=0x%x,Quota=%d,Unack=%d,RRQuota=%d,RRUnack=%d",
118 l2cb.controller_le_xmit_window,
119 p_lcb->handle,
120 p_lcb->link_xmit_quota, p_lcb->sent_not_acked,
121 l2cb.round_robin_quota, l2cb.round_robin_unacked);
122 }
123 else
124 #endif
125 {
126 L2CAP_TRACE_DEBUG6 ("TotalWin=%d,Hndl=0x%x,Quota=%d,Unack=%d,RRQuota=%d,RRUnack=%d",
127 l2cb.controller_xmit_window,
128 p_lcb->handle,
129 p_lcb->link_xmit_quota, p_lcb->sent_not_acked,
130 l2cb.round_robin_quota, l2cb.round_robin_unacked);
131 }
132 #endif
133
134 return TRUE;
135 }
l2c_link_send_to_lower 把数据交给了 L2C_LINK_SEND_ACL_DATA,L2C_LINK_SEND_ACL_DATA 事实上是 bte_main_hci_send 函数,bte_main_hci_send 函数通过调用 hci 的接口 transmit_buf 来转送数据包。
transmit_buf 函数作用比較简单,将此数据包入 tx_q 队列。串口(H5)的守护线程 bt_hc_worker_thread 会从 tx_q 队列中获取数据包,并将其发送。
1 static int transmit_buf(TRANSAC transac, char *p_buf, int len)
2 {
3 utils_enqueue(&tx_q, (void *) transac);
4
5 bthc_signal_event(HC_EVENT_TX);
6
7 return BT_HC_STATUS_SUCCESS;
8 }
到这里为止,我们就把 ACL 包整个发送流程分析完了。
(6) ACL 包接收流程
有关 ACL 包接收的过程都是在 btu_task 这个守护线程中处理的。
我们看到 btu_task 处理数据包的过程:
- 等待事件,事件到来后,假设是 TASK_MBOX_0_EVT_MASK(是不是 MBOX里的Task),那么从 mbox 中取出这个数据包。并推断是什么类型的 Event。
- 假设是 BT_EVT_TO_BTU_HCI_ACL,说明是 ACL 数据,交给 l2cap 来处理。
- 假设是 BT_EVT_TO_BTU_L2C_SEG_XMIT,说明是 L2CAP 的分包数据没有发送完,那继续发送分包数据。
1 //部分 btu_task 源代码
2 ...........
3 /* Wait for, and process, events */
4 for (;;)
5 {
6 event = GKI_wait (0xFFFF, 0);
7
8 if (event & TASK_MBOX_0_EVT_MASK)
9 {
10 /* Process all messages in the queue */
11 while ((p_msg = (BT_HDR *) GKI_read_mbox (BTU_HCI_RCV_MBOX)) != NULL)
12 {
13 /* Determine the input message type. */
14 switch (p_msg->event & BT_EVT_MASK)
15 {
16 case BT_EVT_TO_BTU_HCI_ACL:
17 /* All Acl Data goes to L2CAP */
18 l2c_rcv_acl_data (p_msg);//我们的 ACL 数据来了。关键分析这个函数
19 break;
20
21 case BT_EVT_TO_BTU_L2C_SEG_XMIT:
22 /* L2CAP segment transmit complete */
23 l2c_link_segments_xmitted (p_msg);
24 break;
25
26 case BT_EVT_TO_BTU_HCI_SCO:
27 #if BTM_SCO_INCLUDED == TRUE
28 btm_route_sco_data (p_msg);
29 break;
30 #endif
31
32 case BT_EVT_TO_BTU_HCI_EVT:
33 btu_hcif_process_event ((UINT8)(p_msg->event & BT_SUB_EVT_MASK), p_msg);
34 GKI_freebuf(p_msg);
35
36 ....
l2c_rcv_acl_data 这个函数,处理收到的 ACL 包,以下我们来分析一下 l2c_rcv_acl_data 这个函数:
- 在收到的 ACL 包中找出 pkt_type(分包的话要另作处理) 和 handle。
- 若此 ACL 包是一个完整的数据包:
- 首先通过 handle 找到 LCB
- rcv_cid 大于 L2CAP_BASE_APPL_CID(0x0040),说明是上层应用普通数据包,通过 CID 找到当前包的 CCB。
- hci_len 长度肯定要大于 L2CAP 头长度。否则肯定头部出错了。
- 假设 rcv_cid 是 L2CAP_SIGNALLING_CID,说明数据包是 创建和建立 Channel 用的(上层应用数据传输)。使用函数 process_l2cap_cmd 来处理。
- 假设 rcv_cid 是 L2CAP_CONNECTIONLESS_CID 说明是 广播或单播,使用函数 tcs_proc_bcst_msg 处理。
- 假设 rcv_cid 是 L2CAP_BLE_SIGNALLING_CID 说明是 BLE 的signalling包,交给函数 l2cble_process_sig_cmd 处理。
- 普通数据包。直接交给 L2CAP 的数据流状态机 l2c_csm_execute (p_ccb, L2CEVT_L2CAP_DATA, p_msg) 来处理。找到 L2CEVT_L2CAP_DATA 的这个 case,原来通过回调,将此数据包交给上层了(如 RFCOMM,终于是交给 RFCOMM_BufDataInd函数作进一步处理)
上述数据包。我们仅仅考虑了最普通的数据流,其它的控制数据包有时间在分析。
1 void l2c_rcv_acl_data (BT_HDR *p_msg)
2 {
3 UINT8 *p = (UINT8 *)(p_msg + 1) + p_msg->offset;
4 UINT16 handle, hci_len;
5 UINT8 pkt_type;
6 tL2C_LCB *p_lcb;
7 tL2C_CCB *p_ccb = NULL;
8 UINT16 l2cap_len, rcv_cid, psm;
9
10 /* Extract the handle */
11 STREAM_TO_UINT16 (handle, p);
12 pkt_type = HCID_GET_EVENT (handle);
13 handle = HCID_GET_HANDLE (handle);
14
15 /* Since the HCI Transport is putting segmented packets back together, we */
16 /* should never get a valid packet with the type set to "continuation" */
17 if (pkt_type != L2CAP_PKT_CONTINUE)//数据包一定要是完整的,分包另作处理
18 {
19 /* Find the LCB based on the handle */
20 if ((p_lcb = l2cu_find_lcb_by_handle (handle)) == NULL)
21 {
22 UINT8 cmd_code;
23
24 /* There is a slight possibility (specifically with USB) that we get an */
25 /* L2CAP connection request before we get the HCI connection complete. */
26 /* So for these types of messages, hold them for up to 2 seconds. */
27 STREAM_TO_UINT16 (hci_len, p);
28 STREAM_TO_UINT16 (l2cap_len, p);
29 STREAM_TO_UINT16 (rcv_cid, p);
30 STREAM_TO_UINT8 (cmd_code, p);
31
32 if ((p_msg->layer_specific == 0) && (rcv_cid == L2CAP_SIGNALLING_CID)
33 && (cmd_code == L2CAP_CMD_INFO_REQ || cmd_code == L2CAP_CMD_CONN_REQ))
34 {
35 L2CAP_TRACE_WARNING5 ("L2CAP - holding ACL for unknown handle:%d ls:%d cid:%d opcode:%d cur count:%d",
36 handle, p_msg->layer_specific, rcv_cid, cmd_code,
37 l2cb.rcv_hold_q.count);
38 p_msg->layer_specific = 2;
39 GKI_enqueue (&l2cb.rcv_hold_q, p_msg);//加入到队列中,等待 connect 数据包到达,有种可能发生的 case
40
41 if (l2cb.rcv_hold_q.count == 1)
42 btu_start_timer (&l2cb.rcv_hold_tle, BTU_TTYPE_L2CAP_HOLD, BT_1SEC_TIMEOUT);
43
44 return;
45 }
46 else
47 {
48 L2CAP_TRACE_ERROR5 ("L2CAP - rcvd ACL for unknown handle:%d ls:%d cid:%d opcode:%d cur count:%d",
49 handle, p_msg->layer_specific, rcv_cid, cmd_code, l2cb.rcv_hold_q.count);
50 }
51 GKI_freebuf (p_msg);
52 return;
53 }
54 }
55 else
56 {
57 L2CAP_TRACE_WARNING1 ("L2CAP - expected pkt start or complete, got: %d", pkt_type);
58 GKI_freebuf (p_msg);
59 return;
60 }
61 //以下是我们把 ACL 数据包给部分拆包了,即除掉 L2CAP 的控制部分,还原上层的数据包。
62 /* Extract the length and update the buffer header */
63 STREAM_TO_UINT16 (hci_len, p);
64 p_msg->offset += 4;
65
66 #if (L2CAP_HOST_FLOW_CTRL == TRUE)
67 /* Send ack if we hit the threshold */
68 if (++p_lcb->link_pkts_unacked >= p_lcb->link_ack_thresh)
69 btu_hcif_send_host_rdy_for_data();
70 #endif
71
72 /* Extract the length and CID */
73 STREAM_TO_UINT16 (l2cap_len, p);
74 STREAM_TO_UINT16 (rcv_cid, p);
75
76 /* Find the CCB for this CID */
77 if (rcv_cid >= L2CAP_BASE_APPL_CID)// 说明此 rcv_cid 是上层应用普通数据流的 CID
78 {
79 if ((p_ccb = l2cu_find_ccb_by_cid (p_lcb, rcv_cid)) == NULL)
80 {
81 L2CAP_TRACE_WARNING1 ("L2CAP - unknown CID: 0x%04x", rcv_cid);
82 GKI_freebuf (p_msg);
83 return;
84 }
85 }
86
87 if (hci_len >= L2CAP_PKT_OVERHEAD) //数据包长度肯定要大于 Head的值,否则必定是个错包
88 {
89 p_msg->len = hci_len - L2CAP_PKT_OVERHEAD;
90 p_msg->offset += L2CAP_PKT_OVERHEAD;
91 }
92 else
93 {
94 L2CAP_TRACE_WARNING0 ("L2CAP - got incorrect hci header" );
95 GKI_freebuf (p_msg);
96 return;
97 }
98
99 if (l2cap_len != p_msg->len) //长度不相等,那数据包传送过程肯定出现了差错,丢包吧
100 {
101 L2CAP_TRACE_WARNING2 ("L2CAP - bad length in pkt. Exp: %d Act: %d",
102 l2cap_len, p_msg->len);
103
104 GKI_freebuf (p_msg);
105 return;
106 }
107
108 /* Send the data through the channel state machine */
109 if (rcv_cid == L2CAP_SIGNALLING_CID)//控制创建和建立 Channel的 signalling
110 {
111 process_l2cap_cmd (p_lcb, p, l2cap_len); //此函数专门处理这个Channel的事件
112 GKI_freebuf (p_msg);
113 }
114 else if (rcv_cid == L2CAP_CONNECTIONLESS_CID)
115 {
116 /* process_connectionless_data (p_lcb); */
117 STREAM_TO_UINT16 (psm, p);
118 L2CAP_TRACE_DEBUG1( "GOT CONNECTIONLESS DATA PSM:%d", psm ) ;
119 #if (TCS_BCST_SETUP_INCLUDED == TRUE && TCS_INCLUDED == TRUE)
120 if (psm == TCS_PSM_INTERCOM || psm == TCS_PSM_CORDLESS)
121 {
122 p_msg->offset += L2CAP_BCST_OVERHEAD;
123 p_msg->len -= L2CAP_BCST_OVERHEAD;
124 tcs_proc_bcst_msg( p_lcb->remote_bd_addr, p_msg ) ;
125 GKI_freebuf (p_msg);
126 }
127 else
128 #endif
129
130 #if (L2CAP_UCD_INCLUDED == TRUE)
131 /* if it is not broadcast, check UCD registration */
132 if ( l2c_ucd_check_rx_pkts( p_lcb, p_msg ) )
133 {
134 /* nothing to do */
135 }
136 else
137 #endif
138 GKI_freebuf (p_msg);
139 }
140 #if (BLE_INCLUDED == TRUE)
141 else if (rcv_cid == L2CAP_BLE_SIGNALLING_CID) //LE 设备的专用 Channel
142 {
143 l2cble_process_sig_cmd (p_lcb, p, l2cap_len);
144 GKI_freebuf (p_msg);
145 }
146 #endif
147 #if (L2CAP_NUM_FIXED_CHNLS > 0)
148 else if ((rcv_cid >= L2CAP_FIRST_FIXED_CHNL) && (rcv_cid <= L2CAP_LAST_FIXED_CHNL) &&
149 (l2cb.fixed_reg[rcv_cid - L2CAP_FIRST_FIXED_CHNL].pL2CA_FixedData_Cb != NULL) )
150 {
151 /* If no CCB for this channel, allocate one */
152 if (l2cu_initialize_fixed_ccb (p_lcb, rcv_cid, &l2cb.fixed_reg[rcv_cid - L2CAP_FIRST_FIXED_CHNL].fixed_chnl_opts))
153 {
154 p_ccb = p_lcb->p_fixed_ccbs[rcv_cid - L2CAP_FIRST_FIXED_CHNL];
155
156 if (p_ccb->peer_cfg.fcr.mode != L2CAP_FCR_BASIC_MODE)
157 l2c_fcr_proc_pdu (p_ccb, p_msg);
158 else
159 (*l2cb.fixed_reg[rcv_cid - L2CAP_FIRST_FIXED_CHNL].pL2CA_FixedData_Cb)(p_lcb->remote_bd_addr, p_msg);
160 }
161 else
162 GKI_freebuf (p_msg);
163 }
164 #endif
165
166 else
167 {
168 if (p_ccb == NULL)
169 GKI_freebuf (p_msg);
170 else
171 {
172 /* Basic mode packets go straight to the state machine */
173 if (p_ccb->peer_cfg.fcr.mode == L2CAP_FCR_BASIC_MODE)
174 //普通的数据流都是经过这条通路的,以下这个函数觉得非常熟悉吧,由于在发送数据包的时候也调用了他。
175 l2c_csm_execute (p_ccb, L2CEVT_L2CAP_DATA, p_msg);
176 else
177 {
178 /* eRTM or streaming mode, so we need to validate states first */
179 if ((p_ccb->chnl_state == CST_OPEN) || (p_ccb->chnl_state == CST_CONFIG))
180 l2c_fcr_proc_pdu (p_ccb, p_msg);
181 else
182 GKI_freebuf (p_msg);
183 }
184 }
185 }
186 }
以下我们分析一个 Event--number-of-completed-packets,是由函数 l2c_link_process_num_completed_pkts 处理。
这个 event 将会更新我们 LCB 上的数据包数量。
我们追踪这个函数的调用链:
btu_task的一个 BT_EVT_TO_BTU_HCI_EVT case --> btu_hcif_process_event 的一个 HCI_NUM_COMPL_DATA_PKTS_EVT case --> l2c_link_process_num_completed_pkts
通过这个调用链。我们知道处理事件或数据流都在 btu_task 中进行。
l2c_link_process_num_completed_pkts这个函数都做了些什么呢?我们来深入代码了解一下整个过程。
- 通过 num_sent 来更新数据 controller_xmit_window,sent_not_acked。
- 既然又多了 credits(Snoop中的),那么自然调用 l2c_link_check_send_pkts 去找很多其它的包发送下去。
- l2c_link_process_num_completed_pkts 和 l2c_link_check_send_pkts 形成了一个递归式的调用。l2c_link_check_send_pkts 会产生 process num complete 这个event,l2c_link_process_num_completed_pkts找到 Link后在让 l2c_link_check_send_pkts 发包。
1 void l2c_link_process_num_completed_pkts (UINT8 *p)
2 {
3 UINT8 num_handles, xx;
4 UINT16 handle;
5 UINT16 num_sent; //已经发下去的数据,这个数据要更新controller_xmit_window
6 tL2C_LCB *p_lcb;
7
8 L2CAP_TRACE_DEBUG0(" l2c_link_process_num_completed_pkts");
9 STREAM_TO_UINT8 (num_handles, p);
10 L2CAP_TRACE_DEBUG1(" l2c_link_process_num_completed_pkts--number_handles:%d", num_handles);
11 for (xx = 0; xx < num_handles; xx++)//handle 相应着每条逻辑链路(Link)
12 {
13 STREAM_TO_UINT16 (handle, p);
14 STREAM_TO_UINT16 (num_sent, p);
15
16 p_lcb = l2cu_find_lcb_by_handle (handle);
17
18 /* Callback for number of completed packet event */
19 /* Originally designed for [3DSG] */
20 if((p_lcb != NULL) && (p_lcb->p_nocp_cb))
21 {
22 L2CAP_TRACE_DEBUG0 ("L2CAP - calling NoCP callback");
23 (*p_lcb->p_nocp_cb)(p_lcb->remote_bd_addr);
24 }
25
26 if (p_lcb)
27 {
28 #if (BLE_INCLUDED == TRUE)
29 if (p_lcb->is_ble_link)
30 {
31 l2cb.controller_le_xmit_window += num_sent;
32 }
33 else
34 #endif
35 {
36 /* Maintain the total window to the controller */
37 l2cb.controller_xmit_window += num_sent;
38 }
39 /* If doing round-robin, adjust communal counts */
40 if (p_lcb->link_xmit_quota == 0)
41 {
42 /* Don‘t go negative */
43 if (l2cb.round_robin_unacked > num_sent)
44 l2cb.round_robin_unacked -= num_sent;
45 else
46 l2cb.round_robin_unacked = 0;
47 }
48
49 /* Don‘t go negative */
50 if (p_lcb->sent_not_acked > num_sent)
51 p_lcb->sent_not_acked -= num_sent; //更新
52 else
53 p_lcb->sent_not_acked = 0;
54
55 l2c_link_check_send_pkts (p_lcb, NULL, NULL);
56
57 L2CAP_TRACE_DEBUG1("l2c_link_process_num_completed_pkts--l2cb.controller_xmit_window=%d",l2cb.controller_xmit_window);
58
59 /* If we were doing round-robin for low priority links, check ‘em */
60 if ( (p_lcb->acl_priority == L2CAP_PRIORITY_HIGH)
61 && (l2cb.check_round_robin)
62 && (l2cb.round_robin_unacked < l2cb.round_robin_quota) )
63 {
64 l2c_link_check_send_pkts (NULL, NULL, NULL);
65 }
66 }
67
68 #if (L2CAP_HCI_FLOW_CONTROL_DEBUG == TRUE)
69 if (p_lcb)
70 {
71 #if (BLE_INCLUDED == TRUE)
72 if (p_lcb->is_ble_link)
73 {
74 L2CAP_TRACE_DEBUG5 ("TotalWin=%d,LinkUnack(0x%x)=%d,RRCheck=%d,RRUnack=%d",
75 l2cb.controller_le_xmit_window,
76 p_lcb->handle, p_lcb->sent_not_acked,
77 l2cb.check_round_robin, l2cb.round_robin_unacked);
78 }
79 else
80 #endif
81 {
82 L2CAP_TRACE_DEBUG5 ("TotalWin=%d,LinkUnack(0x%x)=%d,RRCheck=%d,RRUnack=%d",
83 l2cb.controller_xmit_window,
84 p_lcb->handle, p_lcb->sent_not_acked,
85 l2cb.check_round_robin, l2cb.round_robin_unacked);
86
87 }
88 }
89 else
90 {
91 #if (BLE_INCLUDED == TRUE)
92 L2CAP_TRACE_DEBUG5 ("TotalWin=%d LE_Win: %d, Handle=0x%x, RRCheck=%d, RRUnack=%d",
93 l2cb.controller_xmit_window,
94 l2cb.controller_le_xmit_window,
95 handle,
96 l2cb.check_round_robin, l2cb.round_robin_unacked);
97 #else
98 L2CAP_TRACE_DEBUG4 ("TotalWin=%d Handle=0x%x RRCheck=%d RRUnack=%d",
99 l2cb.controller_xmit_window,
100 handle,
101 l2cb.check_round_robin, l2cb.round_robin_unacked);
102 #endif
103 }
104 #endif
105 }
106
107 #if (defined(HCILP_INCLUDED) && HCILP_INCLUDED == TRUE)
108 /* only full stack can enable sleep mode */
109 btu_check_bt_sleep ();
110 #endif
111 }
到此为止。我们已经把普通 ACL 包发送和接收部分源代码分析完了。兴许有时间会继续分析控制类型的ACL包。以及ACL链路建立的流程。