7219:复杂的整数划分问题

题目链接:http://noi.openjudge.cn/ch0207/7219/

总时间限制: 
200ms

内存限制: 
65536kB
描述

将正整数n 表示成一系列正整数之和,n=n1+n2+…+nk, 其中n1>=n2>=…>=nk>=1 ,k>=1 。
正整数n 的这种表示称为正整数n 的划分。

输入
标准的输入包含若干组测试数据。每组测试数据是一行输入数据,包括两个整数N 和 K。 
(0 < N <= 50, 0 < K <= N)
输出
对于每组测试数据,输出以下三行数据:
第一行: N划分成K个正整数之和的划分数目
第二行: N划分成若干个不同正整数之和的划分数目
第三行: N划分成若干个奇正整数之和的划分数目
样例输入
5 2
样例输出
2
3
3
输出说明
第一行: 4+1, 3+2,
第二行: 5,4+1,3+2
第三行: 5,1+1+3, 1+1+1+1+1+1

分析

参考来源:http://blog.csdn.net/tp7309/article/details/54880495

整数划分问题这几个变形确实很经典,需要一个个说明下: 
设dp[n][m]表示数n划分方案中,每个数 不大于m 的划分数。

N划分成若干个可相同正整数之和(递归分析与实现

划分分两种情况:

  • 划分中每个数都小于m:则划分数为dp[n][m-1]。
  • 划分中至少有一个数等于m:则从n中减去去m,然后从n-m中再划分,则划分数为dp[n-m][m]。

动态转移方程:dp[n][m]=dp[n][m-1]+dp[n-m][m]。

N划分成若干个不同正整数之和

划分分两种情况:

  • 划分中每个数都小于m:则划分数为dp[n][m-1]。
  • 划分中至少有一个数等于m:则从n中减去m,然后从n-m中再划分,且再划分的数中每个数要小于m, 则划分数为dp[n-m][m-1]。

动态转移方程:dp[n][m]=dp[n][m-1]+dp[n-m][m-1]。

N划分成K个正整数之和(递归分析与实现

设dp[n][k]表示数n划分成k个正整数之和时的划分数。 
划分分两种情况:

  • 划分中不包含1:则要求每个数都大于1,可以先拿出k个1分到每一份,之后在n-k中再划分k份,即dp[n-k][k]。
  • 划分中包含1:则从n中减去1,然后从n-1中再划分k-1份, 则划分数为dp[n-1][k-1]。

动态转移方程:dp[n][k]=dp[n-k][k]+dp[n-1][k-1]。

N划分成若干个奇正整数之和

设f[i][j]表示将数i分成j个正奇数,g[i][j]表示将数i分成j个正偶数。 
首先如果先给j个划分每个分个1,因为奇数加1即为偶数,所以可得: 
f[i-j][j] = g[i][j]。 
划分分两种情况:

  • 划分中不包含1:则要求每个数都大于1,可以先拿出k个1分到每一份,刚可将问题转换为”从i-j中划分j个偶数”,即g[i-j][j]。
  • 划分中包含1:则从n中减去1,然后从n-1中再划分k-1份, 则划分数为f[n-1][k-1]。

动态转移方程:f[i][j]=f[i-1][j-1]+g[i-j][j]。

 1 #include <iostream>
 2 #include <cstring>
 3 using namespace std;
 4 #define N 51
 5 int dp1[N][N];    //N划分成K个正整数之和的划分数目。
 6 int dp2[N][N];    //N划分成若干个不同正整数之和的划分数目。
 7 int dp3[N][N];    //N划分成若干个可相同的正整数之和的划分数目。
 8 int f[N][N];      //N划分成K个奇正整数之和的划分数目。
 9 int g[N][N];      //N划分成K个偶正整数之和的划分数目。
10
11 void initDivideInt() {
12     memset(dp1, 0, sizeof(dp1));  //dp[n][k]=dp[n-k][k]+dp[n-1][k-1]
13     memset(dp2, 0, sizeof(dp2));  //dp[n][m]=dp[n][m-1]+dp[n-m][m-1]
14     memset(dp3, 0, sizeof(dp3));  //dp[n][m]=dp[n][m-1]+dp[n-m][m]
15
16     for (int i = 1; i < N; i++) {
17         for (int j = 1; j < N; j++) {
18             if (i < j) {
19                 dp1[i][j] = 0;
20                 dp2[i][j] = dp2[i][i];
21                 dp3[i][j] = dp3[i][i];
22             }
23             else if (i == j) {
24                 dp1[i][j] = 1;
25                 dp2[i][j] = dp2[i][j - 1] + 1;
26                 dp3[i][j] = dp3[i][j - 1] + 1;
27             }
28             else {
29                 dp1[i][j] = dp1[i - j][j] + dp1[i - 1][j - 1];
30                 dp2[i][j] = dp2[i][j - 1] + dp2[i - j][j - 1];
31                 dp3[i][j] = dp3[i][j - 1] + dp3[i - j][j];
32             }
33         }
34     }
35 }
36
37 //f[i][j]=f[i-1][j-1]+g[i-j][j]
38 void initDivideOdd() {
39     f[0][0] = 1;
40     g[0][0] = 1;
41     for (int i = 1; i < N; i++) {
42         for (int j = 1; j <= i; j++) {
43             g[i][j] = f[i - j][j];
44             f[i][j] = f[i - 1][j - 1] + g[i - j][j];
45         }
46     }
47 }
48
49 int main() {
50 //  freopen("in.txt", "r", stdin);
51     int n, k;
52     initDivideInt();
53     initDivideOdd();
54     while (cin >> n >> k) {
55         cout << dp1[n][k] << endl;
56         cout << dp2[n][n] << endl;
57
58         int sum = 0;
59         for (int i = 0; i <= n; i++) {
60             sum += f[n][i];
61         }
62         cout << sum << endl;
63     }
64     return 0;
65 }

另一篇分析:http://www.cnblogs.com/sjymj/p/5385436.html

时间: 2024-10-19 21:17:21

7219:复杂的整数划分问题的相关文章

noi 7219:复杂的整数划分问题

7219:复杂的整数划分问题 查看 提交 统计 提问 总时间限制:  200ms 内存限制:  65536kB 描述 将正整数n 表示成一系列正整数之和,n=n1+n2+…+nk, 其中n1>=n2>=…>=nk>=1 ,k>=1 .正整数n 的这种表示称为正整数n 的划分. 输入 标准的输入包含若干组测试数据.每组测试数据是一行输入数据,包括两个整数N 和 K. (0 < N <= 50, 0 < K <= N) 输出 对于每组测试数据,输出以下三行

算法课程小记—递归(整数划分问题)

[例2-5]整数划分问题 在正整数n的所有不同划分中,最大加数n1不大于m的划分个数记做q(n,m).可以建立q(n,m)的如下递归关系. (1)q(n,1)=1,n≥1 当最大加数n1不大于1时,任何正整数n只有一种划分形式,即n=1+1+…+1.(n个1) (2)q(n,m)=q(n,n),m≥n 最大加数n1实际上不大于n.因此q(1,m)=1. (3)q(n,n)=1+q(n,n-1) 正整数n的划分由n1=n的划分和n1≤n-1的划分组成. (4)q(n,m)=q(n,m-1)+q(n

整数划分问题(仅仅显示种类数)

这边博客对于整数划分问题,仅仅要求求出对于每个整数可以划分的种类数,採用金典的递归的办法解决. #include<iostream> using namespace std; /* *整数划分问题(仅仅显示种类数) */ int GetIntDivision(int n,int m) { if(n==1&&m>=1) return 1; if(n>=1&&m==1) return 1; if(m>n) return GetIntDivision

整数划分问题的递归解法

转自https://www.skymoon.biz/archives/192 整数划分问题是算法中的一个经典命题之一,有关这个问题的讲述在讲解到递归时基本都将涉及.所谓整数划分,是指把一个正整数n写成如下形式: n=m1+m2+…+mi; (其中mi为正整数,并且1 <= mi <= n),则{m1,m2,…,mi}为n的一个划分.如果{m1,m2,…,mi}中的最大值不超过m,即max(m1,m2,…,mi)<=m,则称它属于n的一个m划分.这里我们记n的m划分的个数为f(n,m);例

整数划分问题(递归法 或 母函数法 )

样题:sdut2015寒假结训赛 开始我还以为是用背包来做,但是写完了代码,怎么写就是不对,并且在实现的时候确实有点地方我用背包的算法描述不了! 后来查到可以用:递归 或者 母函数算法! 比赛时曾考虑过用递归来实现,但没有推导出来,后来发现别人的博客里面写着“整数划分问题”应该在讲解递归的时候就该学会了. 我的心里顿时感到一股抱怨和悔恨,唉!当然自己的责任最大! 整数划分问题是算法中的一个经典命题之一,有关这个问题的讲述在讲解到递归时基本都将涉及.所谓整数划分,是指把一个正整数n写成如下形式:

整数划分问题并显示每一种划分形式

#include<iostream> #include<algorithm> #include<iterator> #include<set> using namespace std; /* *整数划分问题并显示每一种分法 */ set<multiset<int>> GetAllIntDivision(int n) { set<multiset<int>> allDivision; if(1==n) { mul

hdu1028(整数划分问题)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 整数划分问题 整数划分 --- 一个老生长谈的问题: 描述 整数划分是一个经典的问题.请写一个程序,完成以下要求. 输入 每组输入是两个整数n和k.(1 <= n <= 50, 1 <= k <= n) 输出 对于输入的 n,k; 第一行: 将n划分成若干正整数之和的划分数. 第二行: 将n划分成k个正整数之和的划分数. 第三行: 将n划分成最大数不超过k的划分数. 第四行: 将

noi7219 复杂的整数划分问题

noi7219 复杂的整数划分问题 1 #include <bits/stdc++.h> 2 using namespace std; 3 const int maxn = 55; 4 int dp1[maxn][maxn], dp2[maxn][maxn], dp3[maxn][maxn], dp4[maxn][maxn]; 5 void init() { 6 for (int n = 1; n <= 50; n++) { 7 for (int k = 1; k <= 50; k

整数划分问题

1.将n个不同的数字组成的集合划分成若干个元素和不大于m的集合: 1).若是划分多个可重复整数: dp[n][m]= dp[n][m-1]+ dp[n-m][m] dp[n][m]表示整数 n 的划分中,每个数不大于 m 的方案数. 则划分数可以分为两种情况: a.划分中每个数都小于 m,相当于每个数不大于 m- 1, 故划分数为 dp[n][m-1]. b.划分中至少有一个数为 m. 那就在 n中减去 m ,剩下的就相当于把 n-m 进行划分, 故划分数为 dp[n-m][m]; 2).若是划