求平方根——分治法

题目描述:

不用sqrt(x)库函数,实现求平方根。

解题思路:

采用二分法

假定要求数num的平方根,那么首先取1~num之间的中点mid。

若 mid * mid > num,那么 根在 1~mid-1之间;

若 mid * mid < num,那么根在 mid+1~num 之间;

若 mid * mid == num,直接输出 mid;

由于整数int求平方根是向下取整,所以,若mid * mid < x情况下,根可能是mid. 依据上面假设根在mid+1~num之间,那么mid+1~num之间的所有跟都大于num。所以在退出的时候要处理一下。

<span style="font-size:18px;">if (min*min > num)
  return min - 1;
else
  return min;</span>

参考代码:

<span style="font-size:18px;">class Solution{

public:
	int getSqrt(int num)
	{       if(num <= 0) return 0;
		int min = 0;
		int max = num;
		int mid = (min + max) / 2;
		int mark = 0.001;
		while (min <= max)
		{
			if (mid*mid == num)
				return mid;
			else if (mid*mid < num)
				min = mid+1;
			else
				max = mid-1;
			mid = (min + max) / 2;
		}
		if (min * min > num) return min - 1;
		else return min;
	}
};</span>

代码2:考虑精度估计个数约等于num的平方根,精度自定义,同样使用二分法。

float getSqrt(int num, float epsilon)
{
        if(num <=0) return 0;
	float low, high, maymid;
	low = 0;
	high = max(1, num);
	maymid = (low + high) / 2.0;
	while (abs(maymid*maymid - num)>epsilon)
	{
		if (maymid * maymid == num)
			return maymid;
		if (maymid*maymid<num)
			low = maymid;
		else
			high = maymid;
		maymid = (low + high) / 2.0;
	}
	return maymid;
}

参考资料:

http://blog.csdn.net/tosslee/article/details/6998448

http://blog.csdn.net/u012162613/article/details/41361655

时间: 2024-11-09 01:45:09

求平方根——分治法的相关文章

分治法 求 逆序对数 的个数 时间复杂度为O(n*logn)

思路: 分治法 归并排序的过程中,有一步是从左右两个数组中,每次都取出小的那个元素放到tmp[]数组中 右边的数组其实就是原数组中位于右侧的元素.当不取左侧的元素而取右侧的元素时,说明左侧剩下的元素均比右侧的第一个元素大,即均能构成一个逆序对.假设现在左侧剩余n个元素,则逆序对数+n. 另外,如果当所有右侧的元素都取完,但是左侧仍然有元素剩余时,左侧剩余的元素已经在之前的运算中加到了逆序对中,不需要再添加一次 下面给出 归并排序 和 求逆序对数 两份代码: code1: 归并排序 #includ

《github一天一道算法题》:分治法求数组最大连续子序列和

看书.思考.写代码! /*************************************** * [email protected] * blog: http://blog.csdn.net/hustyangju * 题目:分治法求数组最大连续子序列和 * 思路:分解成子问题+合并答案 * 时间复杂度:O(n lgn) * 空间复杂度:O(1) ***************************************/ #include <iostream> using nam

Quick-Select 1亿个数快速求第K小的数 分治法

Quick-Select  1亿个数快速求第K小的数  分治法 利用快速排序的思想,一开始选取中枢元,然后左右调整,接着比对中枢元p和K的大小,如果 p+1 = k (数组从0开始), 那么a[p] 就是答案,因为在p之前的,肯定都是小于a[p]的, 在p之后的,肯定大于p, 所以 a[p] 就是第 p+1 小.假如 p+1 不等于K, 那么根据大小,进行左右调整.调整过程中,理想状态下,每次都砍掉一半,数组的起始坐标要进行调整. 代码: // 快速排序法的修改 #include <iostre

分治法求逆序对数目

设A[1..n]是一个包含n个不同整数的数组.如果在i<j的情况下,有A[i]>A[j],则(i,j)就称为A中的一个逆序对(inversion). 给出一个算法,确定n个元素的任何排列中逆序对的书目.时间复杂度为o(nlgn). 分治法求解思路: 分解:将数组A[1..n]分为两个子序列A[1..p]和A[p+1,n],二分法将其分解.. 解决:根据归并排序的思想,在合并过程中,计算逆序对.假如两个子序列为X={4,5}和Y={2,3},则XY的逆序对为X中元素大于Y中元素的数目. 合并:对

算法笔记_065:分治法求逆序对(Java)

目录 1 问题描述 2 解决方案 2.1 蛮力法 2.2 分治法(归并排序)   1 问题描述 给定一个随机数数组,求取这个数组中的逆序对总个数.要求时间效率尽可能高. 那么,何为逆序对? 引用自百度百科: 设 A 为一个有 n 个数字的有序集 (n>1),其中所有数字各不相同. 如果存在正整数 i, j 使得 1 ≤ i < j ≤ n 而且 A[i] > A[j],则 <A[i], A[j]> 这个有序对称为 A 的一个逆序对,也称作逆序数. 例如,数组(3,1,4,5,

分治法求最大子序列

给定一个序列,下标为 i, i+1, i+2, ...... , j,设 mid = (i+j)/2, 则最大子序列可能出现的地方有三个,mid的左边,mid的右边,或者在中间(包括mid).只要求出左边和右边的最大子序列(子问题),和边界上左边和右边最大子序列的和,找出三个子序列中最大的即可. #include <iostream> using namespace std; /*分治法解决最大子序列问题*/ int MaxSubSum(const int a[], int left, int

分治法求众数问题 (配图)

分治法求众数问题 (配图) 采用分治法,以中间为界限, 先计算围绕中间这个数字的众数情况,然后左右分开递归计算结果,取最值即可. 左右递归计算的时候要先做判断,假如左边或是右边的个数都比已求的重数小,就没必要计算了,即使左边或是右边全部都是一样的,那么他的重数也是小于已求的,所以没必要进行运算,这一周在加深分治算法的学习,这题着实花了我不少时间. 具体代码: // 用分治法求众数 #include <iostream> #include <cstdio> using namespa

分治法求数组的最大值最小值

实现求数组的最大值最小值,蛮力法要容易的多.本着重在体验分治法的思想的原则: 1 int main(void) 2 { 3 void Maxmin(int a[],int low,int high,int maxmin[2]); 4 int a[10],maxmin[2]; 5 6 printf("Enter 10 integer numbers:\n"); 7 for(int i=0;i<10;i++) 8 scanf("%d",a+i); 9 10 Max

poj 3714 Raid 分治法求平面最近点对

题意: 给平面上的n个点,求两点间的最短距离. 分析: 分治法,保存点用vector会tle... 代码: //poj 3714 //sep9 #include <iostream> #include <algorithm> #include <cmath> using namespace std; const double INF=1e50; struct P { double x,y; int type; }p[240000],b[240000]; bool cmp